Lehrbuch der Botanik für Hochschulen by Noll, Schenck, Schimper, and Strasburger

LEHRBUCH
DER
BOTANIK
FÜR HOCHSCHULEN

BEGRÜNDET 1894

VON

EDUARD STRASBURGER, FRITZ NOLL
HEINRICH SCHENCK, A. F. WILHELM SCHIMPER

SECHZEHNTE, UMGEARBEITETE AUFLAGE

BEARBEITET

VON

DR. LUDWIG JOST
O. PROFESSOR AN DER UNIVERSITÄT BONN

DR. HANS FITTING
O. PROFESSOR AN DER UNIVERSITÄT HEIDELBERG

DR. HEINRICH SCHENCK
O. PROFESSOR AN DER TECHNISCHEN HOCHSCHULE DARMSTADT

DR. GEORGE KARSTEN
O. PROFESSOR AN DER UNIVERSITÄT HALLE-WITTENBERG

MIT 844 ZUM TEIL FARBIGEN ABBILDUNGEN IM TEXT

JENA

VERLAG VON GUSTAV FISCHER
1923

Alle Rechte vorbehalten

Copyright 1911 by Gustav Fischer, Publisher, Jena

Druck von Ant. Kämpfe in Jena

[S. iii]

Vorwort zur 1. Auflage.

D

ie Verfasser dieses Lehrbuches wirken seit Jahren als Dozenten der Botanik an der Universität Bonn zusammen. Sie haben dauernd in wissenschaftlichem Gedankenaustausch gestanden und sich in ihrer Lehraufgabe vielfach unterstützt. Sie versuchen es jetzt gemeinschaftlich, ihre im Lehren gesammelten Erfahrungen in diesem Buche niederzulegen. Den Stoff haben sie so untereinander verteilt, daß EDUARD STRASBURGER die Einleitung und die Morphologie, FRITZ NOLL die Physiologie, HEINRICH SCHENCK die Kryptogamen, A. F. W. SCHIMPER die Phanerogamen übernahm.

Trägt auch jeder Verfasser die wissenschaftliche Verantwortung nur für den von ihm bearbeiteten Teil, so war doch das einheitliche Zusammenwirken aller durch anhaltende Verständigung gewahrt. Es darf daher das Buch, ungeachtet es mehrere Verfasser zählt, Anspruch auf eine einheitliche Leistung erheben.

Dieses Lehrbuch ist für die Studierenden der Hochschulen bestimmt und soll vor allem wissenschaftliches Interesse bei ihnen erwecken, wissenschaftliche Kenntnis und Erkenntnis fördern. Zugleich nimmt es aber auch Rücksicht auf die praktischen Anforderungen des Studiums und sucht den Bedürfnissen des Mediziners und Pharmazeuten gerecht zu werden. So wird der Mediziner aus den farbigen Bildern die Kenntnis derjenigen Giftpflanzen erlangen können, die für ihn in Betracht kommen, der Pharmazeut die nötigen Hinweise auf offizinelle Pflanzen und Drogen in dem Buche finden.

Nicht genug ist das Entgegenkommen des Herrn Verlegers zu rühmen, der die Kosten der farbigen Darstellungen im Texte nicht scheute, und der überhaupt alles aufgeboten hat, um dem Buche eine vollendete Ausstattung zu geben.

Bonn, im Juli 1894.

Die Verfasser.

[S. iv]

Aus dem Vorwort zur 5. Auflage.

E

inen schweren Verlust hat unsere gesamte botanische Wissenschaft, und im besonderen auch unser Lehrbuch, durch den inzwischen erfolgten Tod von A. F. W. SCHIMPER erfahren. In der Blüte der Jahre wurde er uns entrissen, ein Opfer seines rastlosen Forschungstriebes. Mit ihm erlosch auch so mancher fruchtbare Gedanke, ohne in wissenschaftliche Tat umgesetzt zu werden. In seinem Nachlaß fanden sich nur lose Blätter als Vorbereitung für die neue Auflage unseres Lehrbuchs vor. Die drei anderen Mitarbeiter hielten es für ihre Pflicht, diese Blätter zu sichten, zu ergänzen, einzuordnen und die begonnene Arbeit, im Sinne des Verstorbenen, zum Abschluß zu bringen, damit sein Name auch noch auf dieser, nach seinem Tode erscheinenden Auflage unseres Lehrbuches stehe.

Bonn, im Dezember 1901.

Die Verfasser.

Aus dem Vorwort zur 6. Auflage.

A

us der gleichmäßig fortschreitenden Aufeinanderfolge neuer Auflagen unseres Lehrbuchs schöpfen wir dauernd neue Anregung, es auf der Höhe seiner Aufgabe zu halten. Die sechste Auflage hat ganz besonders viele Verbesserungen und Änderungen aufzuweisen. Morphologie, Physiologie und Kryptogamen wurden wiederum einer eingehenden Durchsicht unterworfen, die Phanerogamen aber, durch G. KARSTEN, vollständig umgearbeitet.

Der Herr Verleger scheute seinerseits kein Opfer, um zu erreichen, daß das Buch in seiner technischen Ausstattung den ersten Rang behaupte. Er selbst äußerte den Wunsch, wir möchten noch vorhandene, fremden Werken entnommene Habitusbilder möglichst durch Originale ersetzen. Da die Kunst des Farbendrucks seit dem Erscheinen der 1. Auflage dieses Werkes wesentliche Fortschritte gemacht hatte, so veranlaßte der Herr Verleger uns auch, neue Vorlagen für die farbigen Abbildungen zu schaffen. Diese sind von Herrn Dr. ANHEISSER meist nach der Natur entworfen worden.

Bonn, im Oktober 1903.

Die Verfasser.

[S. v]

Aus dem Vorwort zur 10. Auflage.

M

it dieser 10. Auflage vollendet unser Lehrbuch sein fünfzehntes Jahr. Da es sich alle anderthalb Jahre durchschnittlich in einer neuen Auflage verjüngte, so hoffen wir, daß es keine Zeichen hohen Alters an sich trägt. Von dieser 10. Auflage können wir sogar behaupten, daß sie in besonders neuem Gewande vor die Öffentlichkeit tritt.

Einen schweren Verlust hat unser Lehrbuch durch den Tod eines seiner Mitarbeiter, FRITZ NOLL, erfahren. Seine Physiologie trug nicht wenig zu den ersten Erfolgen des Buches bei. Ein ehrenvolles Andenken ist ihm in unserer Wissenschaft gesichert. An seine Stelle trat LUDWIG JOST in den Verband unseres Lehrbuchs ein.

Möge auch diese neue Auflage des Lehrbuchs Nutzen stiften und geneigte Aufnahme finden.

Im Oktober 1909.

Die Verfasser.

Aus dem Vorwort zur 12. Auflage.

S

eit die letzte Auflage unseres Lehrbuches hinausging, hat es durch den Tod EDUARD STRASBURGERS den schwersten Verlust erlitten, der es bisher betroffen. Er hatte an dem zunehmenden Erfolg des Buches, an dem er 17 Jahre mitarbeitete, seine stete Freude und war unausgesetzt bemüht, seinen Teil, die Morphologie, an Form und Inhalt höchsten Ansprüchen genügend zu gestalten.

Nach seinem Ausscheiden trat HANS FITTING als Mitarbeiter ein; ihm fiel die Aufgabe zu, den ersten Teil neu zu bearbeiten. Da zugleich einige Änderungen in der ganzen Stoffverteilung geboten erschienen, ist diese Auflage auch in den anderen Teilen mehr oder minder stark umgestaltet worden. Wir waren bestrebt, die Einheitlichkeit des Buches nach Möglichkeit zu wahren und zu erhöhen.

Zum ersten Male sind alle Figuren — bis auf die von R. ANHEISSER gezeichneten Habitusbilder und die von den Mitarbeitern für ihre eigenen Teile angefertigten Bilder — mit den Namen ihrer Autoren versehen worden, so daß der Anteil der bisherigen Verfasser an der Illustrierung des Buches zum Ausdruck gelangt.

Im April 1913.

Die Verfasser.

[S. vi]

Aus dem Vorwort zur 14. Auflage.

M

it dieser neuen Auflage vollendet unser Lehrbuch das fünfundzwanzigste Jahr seines Bestehens! Es hat im verflossenen Vierteljahrhundert zahlreiche Freunde an deutschen und ausländischen Hochschulen gewonnen; wir hoffen, daß ihm diese Freundschaft auch in Zukunft nach Wiedereintritt des Friedens und mit Wiederaufnahme gemeinsamer Arbeit zur Förderung der Wissenschaft erhalten bleibt. Auf den erzielten Erfolg kann der Herr Verleger, der in dankenswerter Weise die vortreffliche Ausstattung des Buches stets im Auge behielt, mit besonderer Genugtuung zurückblicken. Uns Verfassern aber soll dieser Erfolg erneuten Ansporn geben, fortgesetzt den Ausbau des Buches nach besten Kräften zu fördern und so stets auf dem neuesten Stand der Wissenschaft zu halten.

Obwohl wir den hie und da geäußerten Wunsch, auch die Pflanzengeographie zu behandeln, gerne erfüllen möchten, müssen wir in Rücksicht auf den stattlichen Umfang des Buches davon absehen, ihm einen neuen größeren Abschnitt anzufügen, da eine Kürzung des Inhaltes, wie sie bei den „Samenpflanzen“ dieses Mal versucht ward, nicht den nötigen Raum dafür gewinnen läßt. Für unzweckmäßig aber müssen wir es halten, die wichtige Pflanzengeographie nur auf wenigen Seiten zu erledigen. Es sei daher zunächst noch auf die bereits vorhandenen pflanzengeographischen Werke verwiesen.

Im Juni 1919.

Die Verfasser.

Vorwort zur 16. Auflage.

D

er im Januar 1921 erschienenen 15. Auflage müssen wir — wiederum nach 2 Jahren — eine neue folgen lassen, in welcher die neueste wichtigere Literatur, soweit sie uns erreichbar war, gebührend berücksichtigt wurde.

Wesentliche Änderungen erfuhr die systematische Anordnung der Samenpflanzen auf Grund der Ergebnisse der serodiagnostischen Untersuchungsmethode, die nach Ansicht des Verfassers dieses Abschnittes nicht außer acht gelassen werden durfte.

Dem Herrn Verleger sind wir für die gute Ausstattung des Buches auch in seiner neuesten Gestalt besonders dankbar.

Im April 1923.

Die Verfasser.

[S. vii]

Inhaltsübersicht.

Seite
Einleitung
1
Erster Teil. Allgemeine Botanik.
Erste Abteilung.
Morphologie
5
Erster Abschnitt. Zellenlehre (Zytologie)
8
I.
Gestalt und Größe der Zellen
8
II.
Der lebende Inhalt der Zellen (der Protoplast)
8
A.
Bestandteile
8
B.
Physikalische Eigenschaften
10
C.
Chemische Eigenschaften
11
D.
Bau der Teile
12
E.
Ursprung der Elemente
17
III.
Gröbere leblose Einschlüsse der Protoplasten
23
IV.
Die Zellmembranen
29
Zweiter Abschnitt. Gewebelehre (Histologie)
33
I.
Gewebebildung
33
II.
Zellarten. Gewebearten und Gewebesysteme
38
A.
Die Bildungsgewebe
39
B.
Die Dauergewebe
40
Dritter Abschnitt. Organlehre (Organographie)
61
I.
Vegetationsorgane
62
A.
Der Thallus
63
B.
Der Kormus
72
1.
Bau des typischen Kormus
72
a)
Der Sproß
73
α)
Der Vegetationspunkt
73
β)
Die Sproßachse
75
γ)
Die Blätter
92
δ)
Die Verzweigung der Sprosse
104
b)
Die Wurzel
112
c)
Sekundäres Dickenwachstum des Kormus
120
2.
Anpassungen des Kormus an Lebensweise und Umwelt
141
A.
Autotrophe Kormophyten
141
a)
Anpassungen an den Feuchtigkeitsgehalt der Umwelt
141
b)
Anpassungen an den Lichtgewinn
155
c)
Anpassungen der grünen Kormophyten an besondere Ernährungsweise
158
B.
Heterotrophe Kormophyten
161
II.
Fortpflanzungsorgane
163
Vierter Abschnitt. Die Deszendenzlehre und die Entstehung der Anpassungen
176
Zweite Abteilung.
Physiologie
182
Kennzeichen des Lebens
182
Erster Abschnitt. Stoffwechsel
187
I.
Die stoffliche Zusammensetzung der Pflanze
187
II.
Aufnahme und Bewegung der Nährstoffe
188
III.
Assimilation der Nährstoffe
212
IV.
Wanderung und Wandlung der Assimilate
227
V.
Atmung und Gärung
233
Zweiter Abschnitt. Entwicklung
242
I.
Vorbemerkungen
242
1.
Wachstumsmessung
242
2.
Phasen des Wachstums
245
II.
Die Faktoren der Entwicklung
250
A.
Äußere Faktoren
250
B.
Innere Faktoren
259
III.
Der Entwicklungsgang und seine Abhängigkeit von äußeren und inneren Faktoren
265
A.
Ruhe und Wachstum
266
B.
Wachstum und Zellteilung
268
C.
Vegetative Gestaltung
270
D.
Lebensdauer
271
E.
Fortpflanzung
272
F.
Vererbung, Variabilität, Artbildung
277
Dritter Abschnitt. Bewegungen
288
I.
Lokomotorische Bewegungen
289
II.
Krümmungsbewegungen
294
A.
Hygroskopische Bewegungen
295
B.
Bewegungen an der lebenstätigen Pflanze
296
1.
Autonome Bewegungen
296
2.
Paratonische Bewegungen
298
a)
Tropismen
299
b)
Nastische Bewegungen
315
III.
Rückblick auf die Reizerscheinungen
321
[S. viii]

Zweiter Teil. Spezielle Botanik.
Erste Abteilung.
Thallophyta
327
Bacteria
329
Cyanophyceae
335
Flagellatae
337
Myxomycetes
339
Dinoflagellatae
342
Diatomeae
343
Conjugatae
348
Heterocontae
351
Chlorophyceae
352
Phaeophyceae
361
Characeae
369
Rhodophyceae
371
Phycomycetes
376
Eumycetes
383
Lichenes
410
Bryophyta
415
Hepaticae
422
Musci
427
Pteridophyta
432
Filicinae
437
Equisetinae
448
Sphenophyllinae
452
Lycopodinae
452
Pteridospermeae
461
Zweite Abteilung.
Spermatophyta
464
Übergang von den Farnpflanzen zu den Samenpflanzen
464
Übersicht des Generationswechsels
467
Morphologie und Ökologie der Blüte
468
Morphologie
468
Blütenstände
476
Ökologie
477
Entwicklung der Geschlechtsgeneration bei den Samenpflanzen
485
A.
Gymnospermen
485
a)
Cycadeen
485
b)
Koniferen
488
c)
Gnetineen
492
B.
Angiospermen
493
a)
Mikrosporen
493
b)
Makrosporen
494
Der Samen
500
Die Frucht
502
Verbreitung der Samen
505
Die Keimung
507
Anordnung der Klassen, Ordnungen und Familien
509
I.
Klasse Gymnospermae
509
1.
Ordnung Cycadinae
509
2.
   „   Ginkgoinae
511
3.
   „   Coniferae
511
Familie Taxaceae
512
  „   Pinaceae
513
4.
Ordnung Gnetinae
519
Die fossilen Gymnospermen
519
II.
Klasse Angiospermae
523
1.
Unterklasse Dicotylae
524
Choripetalae
525
1.
Ordnung Polycarpicae
525
2.
   „   Hamamelidinae
532
3.
   „   Rosiflorae
533
4.
   „   Leguminosae
538
5.
   „   Myrtiflorae
544
6.
   „   Umbelliflorae
547
7.
   „   Centrospermae
551
8.
   „   Primulinae
555
9.
   „   Polygoninae
555
10.
   „   Loranthiflorae
556
11.
   „   Juglandiflorae
556
12.
   „   Piperinae
557
13.
   „   Querciflorae
558
14.
   „   Saliciflorae
562
15.
   „   Urticinae
563
16.
   „   Rhoeadinae
566
17.
   „   Cistiflorae
569
18.
   „   Columniferae
570
19.
   „   Tricoccae
574
20.
   „   Gruinales
577
21.
   „   Frangulinae
581
22.
   „   Ericinae
583
Sympetalae
584
A.
Pentacyclicae
584
1. Ordnung Diospyrinae
584
B.
Tetracyclicae
584
2. Ordnung Contortae
585
3.    „   Tubiflorae
589
4.    „   Personatae
592
5.    „   Rubiinae
597
6.    „   Synandrae
600
2.
Unterklasse Monokotylae
609
1. Ordnung Helobiae
610
2.    „   Spadiciflorae
612
3.    „   Liliiflorae
617
4.    „   Enantioblastae
623
5.    „   Glumiflorae
625
6.    „   Scitamineae
630
7.    „   Gynandrae
633
Die fossilen Angiospermen
636
Offizinelle und giftige Pflanzen
654

[S. 1]

EINLEITUNG.[A]

 

Die Organismen, die unsere Erde bewohnen, teilt man in Tiere und Pflanzen ein. Dementsprechend zerfällt die Biologie oder Lehre von den Lebewesen in Zoologie, die Wissenschaft von den Tieren, und in Botanik, die Wissenschaft von den Pflanzen.

Unter Pflanzen pflegt man festgewachsene, grüne, blühende und fruchtende Lebewesen sich vorzustellen, unter Tieren dagegen meist frei bewegliche Organismen, die Nahrung aufsuchen oder einfangen und fressen. So leicht es also bei oberflächlicher Kenntnis zu sein scheint, das Reich der Pflanzen gegen das der Tiere abzugrenzen, so schwer ist es doch in Wirklichkeit. Bei sehr einfach gebauten, d. h. äußerlich und innerlich wenig gegliederten, Organismen, die man als die niedrigsten bezeichnet, läßt sich oft nicht entscheiden, ob man sie in das Pflanzen- oder Tierreich einreihen soll. Tiere und Pflanzen haben nämlich die folgenden wichtigen Eigenschaften gemein:

1. Die Pflanze besteht aus einem oder vielen, mikroskopisch kleinen Kämmerchen, den Zellen, die sich durch Teilung vermehren. Aus Zellen ähnlichen Baues und entsprechender Herkunft ist das Tier zusammengesetzt. So haben Pflanzen und Tiere im wesentlichen gleichen inneren Bau.

2. Die Pflanze ist wie das Tier ein lebendes Wesen und stimmt in ihren wichtigsten Lebensregungen völlig mit dem Tiere überein: Die Vorgänge der Ernährung und des Wachstums, der Entwicklung und der Fortpflanzung sind bei Pflanzen und Tieren im großen und ganzen wesentlich gleich, z. B. atmet auch die Pflanze und entwickelt dabei Wärme; ferner besitzt sie auch Bewegungsvermögen und Reizbarkeit mannigfaltiger Art.

3. Diese weitgehende Übereinstimmung zwischen den Lebensäußerungen der Pflanzen und der Tiere kann nicht wundernehmen, wenn man weiß, daß bei Pflanzen und Tieren das Leben an eine sehr ähnliche „Grundsubstanz“, an das Protoplasma, gebunden ist, das sich in den Zellen befindet.

Solche und viele andere Tatsachen weisen darauf hin, daß die Pflanzen untereinander und mit den Tieren blutsverwandt sind. Diese in der Abstammungs- oder Deszendenzlehre zum Ausdruck kommende Auffassung kann man als eine grundlegende Theorie der Biologie bezeichnen. Die Vorstellung, daß die Lebewesen mit zusammengesetzterem Bau, mit höherer Organisation, aus einfacher gestalteten sich entwickelt haben, reicht bis auf die griechischen Philosophen zurück; sie wurde zu Beginn des 19. Jahrhunderts vor allem von dem französischen Zoologen LAMARCK vertreten. Eine wissenschaftliche Begründung erhielt sie aber erst später. Namentlich war es CHARLES DARWIN[1], der durch eine Fülle von Beweismaterial das zuvor[S. 2] herrschende Dogma von der Unveränderlichkeit der Arten endgültig erschütterte und dadurch die großen Probleme der organischen Entwicklung in Fluß brachte. Die Paläontologie lehrt uns aus Versteinerungen und Abdrücken von Tieren und Pflanzen, daß in früheren Erdperioden andere Lebewesen als in der Gegenwart, aber zum Teil den jetzigen ähnliche den Erdball bewohnten. Diese Beobachtung legt schon den Schluß nahe, daß die jetzt lebenden Formen durch Umbildungen ausgestorbener entstanden sind. Er führt zu der Folgerung, daß solche sehr ähnliche Organismen, die wir als Arten in einer Gattung vereinigen, miteinander blutsverwandt sind, und daß man durch Vereinigung von Arten zu Gattungen, von Gattungen zu Familien und von Familien zu noch höheren Einheiten in einem „natürlichen“ Systeme Verwandtschaftsgrade zum Ausdruck bringt. Die Entwicklung, d. h. die Umwandlungen, die ein Lebewesen im Laufe von Generationen während der Jahrtausende durchgemacht hat, nennt man mit ERNST HAECKEL[2] seine Stammesgeschichte oder Phylogenie, die Entwicklung, die es während seines Einzeldaseins durchmacht, seine Ontogenie. Die Deszendenzlehre nimmt nun an, daß die höher organisierten Pflanzen und Tiere phylogenetisch in letzter Linie aus gemeinsamen Wurzeln entstanden sind, nämlich aus sehr einfachen Formen, die vielleicht den einfachsten, heute noch lebenden ähnlich waren, und zwar so, daß von solchen die phylogenetische Entwicklung einerseits in der Richtung auf die höheren Tiere, andererseits in der Richtung auf die ausgeprägten Pflanzen fortschritt. Nach dieser Annahme, die ihre Stütze außer in den vielen, allen Tieren und Pflanzen gemeinsamen Eigenschaften, eben in der Tatsache findet, daß eine scharfe Grenze zwischen Tier- und Pflanzenreich in den Gruppen der niedersten Formen sich nicht ziehen läßt, bilden alle lebenden Wesen im Grunde genommen ein einziges Naturreich, das Reich der Organismen.

Ausgeprägt pflanzliche Merkmale wurden im Laufe der phylogenetischen Entwicklung: die Ausbildung der wichtigsten Körperflächen, die der Nahrungsaufnahme dienen, nach außen (während dafür beim Tiere eine von einem Munde ausgehende innere Körperfläche durch Einstülpung entstand), ferner die Zellulosezellmembranen, mit denen die Zellen sich umkleideten, endlich die grünen Farbkörper, die sich im Inneren der Zellen ausbildeten. Der grüne Farbstoff befähigte die Pflanze, aus der Kohlensäure der Luft, aus Wasser und aus gewissen Bodensalzen, also aus anorganischen Verbindungen, ihre organische Leibessubstanz aufzubauen und dadurch selbständig und unabhängig von allen anderen Organismen zu leben; das Tier dagegen blieb in seiner Ernährung, unmittelbar oder mittelbar, auf die Pflanze angewiesen, also in seinem Bestehen von ihr abhängig. Fast alle Unterschiede, die zwischen ausgeprägten Pflanzen und Tieren bestehen, lassen sich aus diesen Besonderheiten der Ernährung ableiten. Als bezeichnend für die Pflanzen kann ferner ihre ontogenetische Entwicklung gelten, die niemals abgeschlossen wird, vielmehr an den Vegetationspunkten unbegrenzt fortdauert, so daß die Pflanze im Prinzip immer weiter wächst. Daß aber keines dieser Merkmale für sich allein ausreicht, um eine Pflanze von einem Tiere mit Sicherheit zu unterscheiden, lehrt uns beispielsweise die ganze Pflanzengruppe der Pilze; sie enthalten den grünen Farbstoff nicht und sind infolgedessen wie die Tiere in ihrer Ernährung auf organische Stoffe angewiesen, die letzten Endes einmal von grünen Pflanzen gebildet worden waren. Gleichwohl rechnen wir die Pilze zum Pflanzenreich, wen sie sich von grünen Gewächsen phylogenetisch ableiten lassen.

Eine strenge, allgemeingültige Definition der „Pflanze“ und des „Tieres“ zu geben, ist aber ganz unmöglich. Wir müssen uns also hier mit dem Hinweise[S. 3] begnügen, daß von bekannteren Lebewesen die Bakterien, Algen, Pilze, Flechten, Moose, Farn- und Samenpflanzen (Gymnospermen und Angiospermen) der Pflanzenwelt zugerechnet werden und somit Gegenstände der botanischen Forschung sind.

Viel leichter als die Begrenzung der Tier- und Pflanzenwelt gegeneinander scheint die Aufgabe zu sein, das Reich der Organismen gegen das der leblosen Körper abzugrenzen. Wir kennen kein Lebewesen, dem das Protoplasma fehlt, aber keinen leblosen Körper, worin sich tätiges Protoplasma nachweisen ließe. Seit es in der organischen Chemie EMIL FISCHER gelungen ist, Zuckerarten synthetisch darzustellen und die Synthese der Eiweißkörper anzubahnen, haben wir aber mehr denn je Grund zu der Annahme, daß auch die Masse, die den Ausgangspunkt der organischen Entwicklung bildete: das Protoplasma, einen anorganischen Ursprung gehabt habe; denn diese Masse enthält nur Elemente, die auch in der anorganischen Natur vorkommen. Eine solche Urzeugung oder „Generatio spontanea“ hielt man im Altertume sogar bei hochorganisierten Pflanzen und Tieren für möglich; weit verbreitet war die Meinung, die selbst von ARISTOTELES geteilt wurde, daß solche Lebewesen aus Schlamm und Sand hervorgehen könnten. Heute wissen wir freilich durch tausendfältige Erfahrung, daß auch die allerkleinsten und am einfachsten gebauten Organismen nicht in solcher Weise entstehen, sondern nur aus ihresgleichen hervorgehen. So mag die lebende Substanz aus lebloser vielleicht nur in einem bestimmten Entwicklungszustande unserer Erde oder anderer Weltkörper entstanden sein, als besondere Bedingungen zu ihrer Bildung sich eingestellt hatten. Diese Annahme beseitigt freilich nicht alle Schwierigkeiten, die der Vorstellung einer Urzeugung erwachsen. Damit aus solcher lebenden Substanz die Welt der Organismen hervorgehen konnte, müßte sie nämlich von vornherein die Fähigkeit gehabt haben, sich zu erhalten, zu wachsen, fremde in ihren Körper aufgenommene Stoffe in Körpermasse zu verwandeln, sich fortzupflanzen, d. h. sich durch Teilung zu vervielfältigen, endlich neue Eigenschaften den vorhandenen hinzuzufügen und sie erblich festzuhalten; kurz gesagt, es müßten in dieser durch Urzeugung entstandenen Substanz alle wesentlichen Merkmale des Lebens bereits ausgeprägt vorhanden gewesen sein[3].

Die Botanik zerfällt in eine Anzahl von Teilen. Die Morphologie lehrt uns die äußere Gestalt und den inneren Bau der Pflanzen im fertigen Zustande und während der ontogenetischen Entwicklung kennen und verstehen. Die Physiologie erforscht die Lebenserscheinungen der Gewächse. Beide Forschungszweige untersuchen auch die Beziehungen der Bau- und der Lebenseigentümlichkeiten jeder Pflanze zu ihrer Umgebung, zu ihren Außenbedingungen; sie sind bestrebt, festzustellen, ob und wie weit diese Besonderheiten für ihren Träger nützlich sind, also zu seiner Selbstbehauptung dienen, d. h. ob sie als Anpassungen gedeutet werden können. Diese Teile der Morphologie und Physiologie, die oft von den übrigen gesondert behandelt werden, faßt man wohl auch als Ökologie zusammen. Die Systematik beschäftigt sich mit der Beschreibung der Einzelformen und mit der Klassifikation der Pflanzenwelt. Die Pflanzengeographie hat zur Aufgabe, die Verteilung der Gewächse auf unserer Erde festzustellen und die Ursachen dieser Verteilung zu ermitteln. Die Paläophytologie erforscht die ausgestorbenen Pflanzen und die zeitliche Aufeinanderfolge der Gewächse, mit anderen Worten, die historischen Veränderungen der Pflanzenwelt auf[S. 4] der Erde. Alle diese Gebiete rechnet man der reinen oder theoretischen Botanik zu.

Aber nicht nur theoretische Ziele verfolgt die Botanik. Sie will auch die gewonnenen Erkenntnisse für die Menschheit nutzbar machen: die für den Haushalt des Menschen wertvollen Nutzpflanzen genau kennen und immer zweckmäßiger ausnutzen lernen, die Schädlinge aus dem Pflanzenreich erforschen, Verfälschungen der Handelsstoffe, die aus dem Pflanzenreich stammen, nachweisen und dergleichen mehr. So kommen zu den Teilgebieten der reinen Pflanzenkunde zahlreiche Zweige der angewandten Botanik: z. B. die Pharmakognosie oder Lehre von den Arzneipflanzen und ihren Produkten, den Pflanzendrogen; die Lehre von den Giftpflanzen; die Lehre von den pflanzlichen Nahrungs-, Genußmitteln und Gewürzen; die Lehre von den technisch wertvollen Gewächsen und ihren Produkten; die landwirtschaftliche Botanik; die Forstbotanik; die gärtnerische Botanik; ferner ein Teil der Pflanzenpathologie, soweit sich nämlich dieser Wissenschaftszweig mit der Bekämpfung der Pflanzenkrankheiten beschäftigt, und andere. —

Man kann die Botanik ferner auch, wie in diesem Buche, das in allererster Linie die reine Botanik behandelt, in einen allgemeinen und in einen speziellen Teil zerlegen. Aufgabe und Ziel der allgemeinen Botanik ist es alsdann, aus planmäßigen Untersuchungen an den einzelnen Pflanzen durch Vergleichung die Eigenschaften zu ermitteln, die für die ganze Pflanzenwelt oder ihre Hauptgruppen besonders bezeichnend sind. Die allgemeine Botanik haben wir wieder in zwei Abschnitte, in Morphologie und Physiologie, geteilt.

Aufgabe der speziellen Botanik ist es, die Baueigentümlichkeiten, Fortpflanzungsverhältnisse und Lebensweise der einzelnen Gruppen und Formen zu schildern, ferner die näheren und ferneren Verwandtschaftsbeziehungen, die zwischen ihnen bestehen, durch die Anordnung in einem möglichst „natürlichen“ Systeme zum Ausdruck zu bringen. In diesen speziellen Teil des Lehrbuches haben wir einige besonders wissenswerte Tatsachen aus manchen Zweigen der angewandten Botanik, namentlich der Pharmakognosie, eingeflochten. Die Ergebnisse der paläophytologischen Forschung sind an die Schilderung der Einzelgruppen angeschlossen. Auch die Pflanzengeographie ist nicht ganz unberücksichtigt geblieben, wenn davon auch keine zusammenhängende Darstellung gegeben wurde.

[A]Die eingeklammerten kleinen Zahlen beziehen sich auf die Literaturnachweise am Schlusse des Buches. Diese Nachweise sollen denen dienen, die tiefer in den Stoff einzudringen wünschen.

[S. 5]

ERSTER TEIL
Allgemeine Botanik.
Erste Abteilung.
Morphologie.
Die Morphologie der Pflanzen lehrt uns die äußere Gestalt und den inneren Bau der Gewächse sowie die ontogenetische Entwicklung ihres Körpers und seiner Glieder kennen. Sie strebt darüber hinaus ein wissenschaftliches Verständnis der Pflanzenformen an, indem sie sich bemüht, die Bedeutung und die phylogenetische Herkunft der Pflanzenteile festzustellen und die Ursachen für die Gestaltungsvorgänge zu ermitteln.

1. Man lernt nämlich den äußeren und inneren Bau eines Lebewesens nur dann verstehen, wenn man sich erstens klar bewußt wird, daß das Tier oder die Pflanze ein lebender Organismus ist, d. h. ein Gebilde, dessen wichtigste Glieder nicht bedeutungslose Anhängsel, sondern für das Leben notwendige Organe sind, durch deren harmonisches Zusammenarbeiten erst das Leben des Ganzen zustande kommt[4]. Fast alle äußeren Teile der Pflanze sind, wie beim Tiere, solche Werkzeuge für bestimmte Lebensverrichtungen. Aber nur dann können die Teile des Körpers ihre Leistungen im Dienste des ganzen Organismus erfüllen, wenn sie äußerlich und innerlich im großen und ganzen leistungsfähig gebaut sind, oder, wie man auch sagt, wenn ihr Bau einigermaßen ihren Funktionen entspricht, ihnen angepaßt ist. Da nun die einzelnen Teile bei höheren Pflanzen verschiedene Funktionen haben, so wird es verständlich, daß sie auch ganz verschiedenen äußeren und inneren Bau besitzen.

Um ein volles Verständnis vom Bau eines Organismus zu gewinnen, muß man sich weiter über die Lebensverhältnisse klar werden, unter denen er zu leben gewohnt ist: man muß seine Umwelt kennen. Jede Pflanze besitzt nämlich, wie das Tier, Baueigentümlichkeiten, die es ihr nur ermöglichen, unter bestimmten Außenbedingungen zu leben, wie sie nicht überall da vorhanden sind, wo wir auf der Erde Gewächse antreffen. Im Wasser z. B. sind die Lebensbedingungen ganz anders als in der Wüste beschaffen. Dementsprechend sind die Wüstenpflanzen und die Wassergewächse völlig verschieden gebaut und nur imstande, in ihren gewohnten Verhältnissen oder solchen zu gedeihen, die diesen einigermaßen ähnlich sind; jedenfalls können aber die Wüstengewächse nicht im Wasser und die Wasserpflanzen nicht in der Wüste leben. Ein Organismus ist also nur dann lebensfähig, wenn sein[S. 6] äußerer und innerer Bau auch genügend auf die Umwelt abgestimmt, wenn er an seine Lebensverhältnisse angepaßt ist.

Freilich lehrt eindringende morphologische Forschung alsbald, daß zwar fast ein jedes Körperglied der Pflanze seine Funktionen hat, daß aber längst nicht alle Eigentümlichkeiten seines äußeren und inneren Baues als Anpassungen an diese Funktionen oder als Anpassungen an die Umwelt gedeutet werden können: nur ein Teil der Merkmale eines Pflanzengebildes steht in solchen Beziehungen zu seinen Verrichtungen oder zur Umgebung, so z. B. bei den Laubblättern der Reichtum an grünem Farbstoff und die flächenförmige Ausbildung zu ihrer Hauptfunktion, der Kohlensäureassimilation. Solche Eigenschaften bezeichnet man wohl auch als nützlich für den Organismus oder als Anpassungsmerkmale. Daneben gibt es aber genug gleichgültige, so an vielen Blättern wohl die Beschaffenheit ihrer Ränder (Ganzrandigkeit, Sägung, Kerbung der Ränder u. dgl.), ja selbst ungünstige (wie das Fehlen des grünen Farbstoffes in größeren Teilen der Blätter, z. B. bei manchen wegen solcher „Weißbuntheit“ gern kultivierten Ahornrassen), sofern sie den Organismus nicht unfähig zum Leben machen. Eine Eigenschaft kann ferner bei einer Art mehr oder weniger nützlich, bei einer anderen gleichgültig oder gar schädlich sein. Solche Tatsachen zeigen nachdrücklich, wie vorsichtig man bei der Beurteilung der Bedeutung aller organischen Formen und Strukturen sein muß, zumal viele Annahmen über ihren Nutzen sich nur sehr schwer durch Versuche auf ihre Richtigkeit prüfen lassen[5].

2. Aber noch in einer zweiten Richtung strebt die Morphologie wissenschaftliches Verständnis der Pflanzenformen an. Alle lebenden Pflanzen betrachten wir als mehr oder weniger blutsverwandt. Aus einfachen, ungegliederten Formen, aus Einzelzellen, sind phylogenetisch allmählich die am höchsten organisierten Wesen mit zahlreichen verschiedenen Organen hervorgegangen. Dabei haben die Organismen und ihre Teile mannigfaltige Weiter- und Umbildungen erfahren, indem z. B. einzelne Organe durch Veränderungen ihres Baues neue Funktionen übernahmen oder neuen Lebensverhältnissen angepaßt wurden. Eine sehr wichtige Aufgabe der Morphologie ist es nun, diese phylogenetischen Umbildungen zu erforschen. Da die stammesgeschichtliche Entwicklung aber meist nicht direkt verfolgt, sondern nur erschlossen werden kann, so ist die Morphologie zur Lösung dieser Aufgabe auf indirekte Methoden angewiesen. Die wichtigsten Aufschlüsse in dieser Hinsicht gewinnt sie 1. durch das Studium der Ontogenie der Organismen, ferner 2. durch die Vergleichung der jetzt bestehenden Lebewesen untereinander und mit solchen, die in früheren Erdperioden gelebt haben. Die Ontogenie eines Organismus durchläuft nämlich häufig innerhalb gewisser Grenzen Entwicklungsstadien, die man als phylogenetische betrachten darf; sie kann daher zur Ermittelung der stammesgeschichtlichen Entwicklung beitragen. Und die vergleichende Forschung bemüht sich, die verschiedenen Gestaltungen durch Zwischenglieder zu verbinden. Da aber die Ontogenie die Phylogenie niemals vollständig oder unverändert wiederholt und die Zwischenglieder zwischen den verschiedenen Formen vielfach fehlen, so bleiben freilich die Ergebnisse auch dieser Richtung der morphologischen Forschung entsprechend unvollkommen.

Haben wir durch eingehende Untersuchungen die Überzeugung gewonnen, daß verschieden gestaltete Glieder des Pflanzenkörpers einen gemeinsamen phylogenetischen Ursprung haben, so bezeichnen wir die hypothetische Ursprungsform, von der wir sie ableiten, als ihre Grundform, die verschiedenen Umbildungen aber, die die Organe im Laufe der Stammesgeschichte erfahren haben, auch wohl als ihre Metamorphosen. Eines der allerwichtigsten Ergebnisse der Morphologie besteht in dem Nachweise, daß die mannig[S. 7]faltig gestalteten äußeren und inneren Teile selbst der am reichsten gegliederten Pflanzen sich auf ganz wenige Grundformen zurückführen lassen, nämlich bei den höher organisierten Pflanzen die äußeren Teile auf Wurzel, Stengel und Laubblatt, ferner bei allen Pflanzen die inneren Teile auf die Zellen und ihre Bestandteile. Die Organe, die sich aus einer gemeinsamen Grundform phylogenetisch weiter entwickelt haben, nennen wir homolog, mögen sie auch noch so verschieden aussehen. Ihnen schreiben wir gleichen morphologischen Wert zu. Homolog sind z. B. die Laubblätter und die Blätter der Blüten (die Kelch-, Kron-, Staub- und Fruchtblätter), ferner auch die Laubblätter, die Blattranken (Fig. 207) und die Blattdornen (Fig. 195). Organe völlig verschiedenen Baues und ganz verschiedener Funktion können also doch homolog sein, also den gleichen morphologischen Wert besitzen. Andererseits haben sich oft Organe mit gleichem Bau und mit gleicher Funktion (z. B. Knollen Fig. 201, 203, 204, Dornen Fig. 195, 197, 198, Ranken Fig. 206–208) phylogenetisch aus verschiedenen Grundformen entwickelt. Solche Organe nennt man analog (zahlreiche Beispiele vgl. S. 141 ff.). Wenig differenzierte Gebilde ohne deutlich ausgeprägte Funktionen, die sich aus vollkommeneren rückgebildet haben, bezeichnen wir als reduziert.

3. Schließlich setzt sich die Morphologie die Aufgabe, die Ursachen oder Bedingungen zu ermitteln, die wie jedem Naturgeschehen, so auch den Vorgängen der äußeren und inneren Ausgestaltung der Pflanze und ihrer Teile, ferner ihren vererbbaren (phylogenetischen) Umwandlungen zugrunde liegen, und darüber Klarheit zu gewinnen, wie sich im Laufe der stammesgeschichtlichen Entwicklung die Eigenschaften ausbilden konnten, die wir als Anpassungsmerkmale bezeichnet haben. Den Teil der Morphologie, der sich mit solchen Fragen beschäftigt, kann man experimentelle Morphologie nennen. Die Mehrzahl ihrer Probleme findet man aber zweckmäßiger meist, so auch in unserem Lehrbuche, als besonderen Abschnitt der Physiologie, d. h. des Zweiges der Botanik behandelt, der sich überhaupt mit den Lebensvorgängen der Pflanzen beschäftigt (Entwicklungsphysiologie).

Die Morphologie kann man zerlegen in die Lehre vom äußeren Bau (äußere Morphologie) und in die Lehre vom inneren Bau (innere Morphologie oder Anatomie). Für unser Buch aber wäre eine solche Gliederung nicht zweckmäßig. Wollen wir doch die Glieder als Organe mit bestimmten Lebensverrichtungen begreifen lernen. Dafür aber ist es notwendig, zusammenhängend zu zeigen, in wie inniger Beziehung vielfach nicht nur der äußere, sondern auch der innere Bau eines Organes zu seinen Funktionen steht. Nicht die Pflanze als totes Gebilde, sondern als lebender Organismus soll uns ja in erster Linie beschäftigen.

Die erste Frage, die es da zu beantworten gilt, ist die nach dem Träger der Lebenserscheinungen. Woran ist das Leben gebunden? Nur an einen Teil der ganzen Substanz einer Pflanze, nämlich an das Protoplasma. Das Protoplasma aber ist in der Regel eingeschlossen in die Zellen, die man als Elementarteile des Organismus ansehen kann. Infolgedessen müssen wir den Bau der Zellen vor allem kennen lernen. Den Teil der Morphologie, der dieser Aufgabe dient, nennt man Zellenlehre oder Zytologie. Die Zellverbände (Gewebe) des Pflanzenkörpers bilden alsdann den Gegenstand eines zweiten Teiles der Morphologie, der Gewebelehre oder Histologie. Endlich mit den äußeren Gliedern als Organen der Pflanze, und zwar mit ihrem äußeren und inneren Bau, beschäftigt sich die Organlehre oder Organographie.

[S. 8]

Erster Abschnitt. Zellenlehre (Zytologie).
I. Gestalt und Größe der Zellen.
Die Pflanzen werden, gleich den Tieren, aus Elementarteilen aufgebaut, die wir als Zellen bezeichnen. Das sind bei den Pflanzen meist mikroskopisch kleine Kämmerchen, deren Wände im Gegensatze zu den Zellen der Tiere von besonderen Häuten gebildet werden. Die Zellformen entsprechen im einfachsten Falle Kugeln, meist aber kleinen Würfeln, Polyëdern oder Prismen, die bei vielzelligen Organen in großer Menge aufeinander geschichtet sind; auch langgestreckte, ja faser- oder schlauchförmige Zellen kommen häufig vor. Diese Kämmerchen, von denen jedes aus den Kammerwänden, der Zellhaut oder Zellmembran, und aus seinem Innenraum, dem Zellraum oder Zelllumen, besteht, sind im allgemeinen so klein, daß man sie erst bei stärkerer Vergrößerung erkennen kann. Ihr mittlerer Querdurchmesser pflegt nämlich nur ein Hundertstel bis ein Zehntel Millimeter zu betragen. Infolgedessen wurden die Zellen erst spät, in der Neuzeit, entdeckt. Hier und da freilich werden Zellen auch viel größer; manche an besondere Funktionen angepaßte faserförmige Zellen (Sklerenchymfasern) werden bis zu 20 cm, Milchröhren sogar meterlang.

Das wichtigste an diesen Zellen ist ein Teil ihres Inhaltes, der Zellenleib oder Protoplast. Er ist nämlich der eigentlich lebende Teil der Zelle. Deshalb denkt man bei dem Begriff Zelle heutzutage mehr an ihn als an das Gehäuse, das zudem vielen „nackten Zellen“ ganz fehlt. In toten Zellen findet man freilich nur noch Reste der Zellleiber, die aber auch vollständig geschwunden sein können; alsdann enthalten die Zellräume nur Wasser oder Luft. Ihre Bedeutung für den Pflanzenkörper brauchen die Zellen mit dem Tode der Protoplasten aber nicht einzubüßen, ja ohne tote Zellen könnte ein höher organisiertes Gewächs nicht auskommen; denn solche Zellen bilden z. B. seine Wasserbahnen und tragen zu seiner mechanischen Festigung bei.

Fig. 1. HOOKES Bild des Flaschenkorkes, von ihm als Schematism or Texture of Cork bezeichnet; vgl. dazu die Fig. 58.
Die Entdeckung der Zellräume glückte bei den Pflanzen früher als bei den Tieren; sie wurde dort durch die Zellhäute erleichtert. Ihr Entdecker, der englische Mikrograph ROBERT HOOKE, nannte sie Zellen wegen ihrer Ähnlichkeit mit den Zellen der Bienenwaben und bildete sie in seiner Mikrographie 1667 zum ersten Male ab (Fig. 1). Die eigentlichen Begründer der pflanzlichen Histologie sind aber der Italiener MARCELLO MALPIGHI und der Engländer NEHEMIAH GREW, deren Werke kurz nacheinander von 1671 an, also wenige Jahre nach HOOKES Mikrographie, erschienen. Der lebende Inhalt der Zellen, der Zellenleib, wurde in seiner Bedeutung nicht vor der Mitte des vorigen Jahrhunderts erkannt. Alsdann erst wandte man sich auch eingehend seiner näheren Untersuchung zu, die u. a. SCHLEIDEN, HUGO V. MOHL, NÄGELI, FERDINAND COHN und MAX SCHULTZE anbahnten und besonders STRASBURGER förderte.

II. Der lebende Inhalt der Zellen (der Protoplast)[6].
A. Bestandteile des Protoplasten. Untersuchen wir bei starker Vergrößerung zarte Längsschnitte durch die äußerste Stengelspitze einer Samenpflanze, so finden wir, daß sie sich aus annähernd rechteckig begrenzten Zellen zusammensetzen (Fig. 2), die mit Inhalt dicht angefüllt und durch zarte strukturlose Wände, die Zellhäute, voneinander getrennt sind. Die Zellen[S. 9] sind hier annähernd würfelförmig oder prismatisch, weshalb sie eben im Schnitte als Quadrate oder Rechtecke erscheinen.

Im Inhalte jeder Zelle fällt ein runder Körper (k) von Kugel- oder Eiform besonders auf, der einen großen Teil des Zellraums ausfüllt: der Zellkern (Kern, Nucleus). Die feinkörnige Masse, die den Raum zwischen Zellkern (k) und Zellwand (m) einnimmt, bezeichnet man als Zytoplasma (pl) oder Plasma. Um den Zellkern herum findet man, in dem Zytoplasma verteilt, stark lichtbrechende, farblose Körperchen, die Plastiden oder Chromatophoren (ch). Zellkern, Plasma und Chromatophoren sind die lebenden Inhaltsbestandteile der Zelle; sie zusammen bilden das Protoplasma, den lebenden Zellenleib oder Protoplasten. Zellkern und Chromatophoren, die stets im Plasma eingebettet sind, kann man als Organe des Protoplasten ansehen, denen besondere Lebensverrichtungen zukommen. Freilich kennen wir die besonderen Funktionen des Kernes noch nicht; wir wissen nur, daß zur Erhaltung des Lebens der Zelle eine Wechselwirkung zwischen Kern und Plasma notwendig ist. Doch ist es für die niedersten Gewächse, Spaltalgen (Cyanophyceen) und Bakterien, noch immer eine ungelöste Frage, ob bei ihnen eine solche Arbeitsteilung im Protoplasten, d. h. ob bei ihnen ein Zellkern vorkommt[7]. Im Protoplasma der Bakterien fehlen auch die Chromatophoren, ebenso in den Zellen der Pilze und in denen der Tiere.

Dagegen hat man in tierischen Zellen in unmittelbarer Nähe des Kerns noch kleine lebende Gebilde, die Zentriolen, als Bestandteile des Protoplasten nachgewiesen. Ähnliche Gebilde kommen im Pflanzenreiche fast nur in Zellen von Kryptogamen vor, ohne aber allgemeine Verbreitung zu besitzen (Fig. 21 A).

Fig. 2. Embryonale Zelle aus der Wurzelspitze des Hafers. k Zellkern, kw Kernwandung, n Kernkörperchen, pl Plasma, ch Chromatophoren, m Zellwandung. Etwas schematisiert. Vergr. ca. 1500. Nach LEWITSKY.

Fig. 3. Zwei Zellen der Stengelspitze einer Samenpflanze, in verschiedener Entfernung von ihrem obersten Ende entnommen. k Kern, pl Plasma, v Vakuolen (Safträume). Etwas schematisiert. Vergr. ca. 500. Nach STRASBURGER.

Bei den Pflanzen sind nur die embryonalen Zellen, wie man sie z. B. an den äußersten Stengel- und Wurzelspitzen findet, in der eben beschriebenen Weise mit Protoplasma dicht gefüllt. Das ist dagegen nicht der Fall in den ausgebildeten Körperzellen (Dauerzellen), die durch Größenwachstum und mannigfaltige Formveränderungen aus jenen hervorgehen. Während dieser Umwandlung zu Dauerzellen sieht man nämlich die embryonalen Zellen bei den Pflanzen, aber nicht bei den Tieren, immer plasmaärmer werden, weil das Plasma während der Vergrößerung der Zellräume nicht wesentlich vermehrt wird. Diese Umwandlung läßt sich an jedem Längsschnitt durch eine Stengelspitze verfolgen. In einiger Entfernung von[S. 10] seinem oberen Ende enthalten die heranwachsenden Zellen in ihrem Plasma bereits eine größere Anzahl Hohlräume, Vakuolen (v in A Fig. 3), die mit wäßrigem Saft, Zellsaft, gefüllt sind. Die Zellen fahren alsdann noch fort, an Größe zuzunehmen, wobei die Vakuolen verschmelzen. Schließlich wird meist ein Zustand erreicht, wo nur noch ein einziger, großer, mit Zellsaft gefüllter Hohlraum, der Saftraum (v in B Fig. 3), im Plasma der Zelle besteht, das Plasma aber nur einen dünnen Belag an der Zellwandung bildet, in dem auch der alsdann wandständige Kern eingebettet ist (Fig. 3 B k). Der Saftraum kann aber auch in einer ausgewachsenen Zelle von Lamellen und Strängen oder Fäden aus Plasma durchsetzt bleiben, worin oft der Kern, aber stets vom Plasma allseitig umhüllt, aufgehängt ist (Fig. 5, 10). In jeder noch lebenden Zelle ist die Zellwandung auf ihrer Innenseite von einem ununterbrochenen Plasmabelag ausgekleidet, der der Zellwand überall dicht anliegt, in älteren Zellen aber so dünn werden kann, daß man ihn nicht unmittelbar sieht (Fig. 10). Erst wasserentziehende Mittel, die ihn veranlassen, sich von der Zellwandung zurückzuziehen und abzulösen (Plasmolyse, vgl. S. 192), wie etwa stärker konzentrierte Salz- oder Zuckerlösungen, machen ihn alsdann sichtbar.

B. Physikalische Eigenschaften des Protoplasten. Um die physikalischen Eigenschaften, insbesondere den Aggregatzustand, des Protoplasmas kennen zu lernen, wenden wir uns zunächst zu einer Gruppe von Organismen, die an der Grenze zwischen dem Pflanzen- und dem Tierreiche stehen, zu den Schleimpilzen oder Myxomyceten. Sie sind durch einen Entwicklungszustand ausgezeichnet, während dessen ihr Protoplasma größere nackte Massen, die Plasmodien, bildet. Ihr Plasma (Fig. 4) besteht aus netzartig verbundenen, dickeren und dünneren Strängen einer glashellen Grundmasse, die Körnchen enthält und zäh- oder dünnflüssig ist. In diesen Strängen sieht man nämlich das Plasma innerhalb von festeren und dichteren ruhenden Hüllschichten lebhaft nach Art einer Flüssigkeit strömen. Diese inneren Ströme bewegen sich nach den Rändern des Plasmodiums hin oder von ihnen hinweg und wechseln häufig ihre Richtung. An den Rändern des Plasmodiums selbst werden Plasmafortsätze vorgestreckt oder schon vorhandene eingezogen. Dadurch kann das Plasmodium sich kriechend fortbewegen. Wo solche Protoplasmamassen fremden Körpern begegnen, sind sie befähigt, sie in ihr Inneres aufzunehmen, in Vakuolen einzuschließen und, soweit das möglich ist, auch zu verdauen.

Fig. 4. Teil eines ausgewachsenen Plasmodiums von Chondrioderma difforme. Vergr. 90. Nach STRASBURGER.
Wie in den nackten Plasmodien der Schleimpilze, so läßt sich auch bei behäuteten pflanzlichen Zellen oft strömende Bewegung im Plasma erkennen, solange es lebt. Meist stellt sie sich erst in annähernd fertigen Dauerzellen, und zwar vielfach nur dann in auffälliger Weise ein, wenn durch eine Verwundung, etwa das Schneiden bei Herstellung des Präparats, ein Reiz auf die Protoplasten ausgeübt worden ist[8]. Sie scheint den Transport von Nährstoffen nach der Wundstelle zu beschleunigen. Schon an diesen Bewegungen kann man sehen, daß auch hier das Protoplasma meist eine dünn-[S. 11] oder zähflüssige Masse ist; aus seiner Hülle befreit, nimmt es dementsprechend die Form eines runden Tropfens an. In behäuteten Zellen, in denen solche Plasmabewegung vorkommt, sieht man das Protoplasma, abgesehen von seiner stets ruhenden äußersten Schicht, die an die Zellwand angrenzt, entweder in einem einzigen Strome von konstanter Richtung oder in verschiedenen Strömen mit wechselnder Richtung sich bewegen. Man hat danach zwischen Rotation und Zirkulation des Plasmas unterschieden. In den Zellen, in denen Rotationsbewegung vorkommt, z. B. bei vielen Wasserpflanzen, ist das Protoplasma auf einen Wandbelag beschränkt. Der Rotationsstrom folgt der Zellwandung und beschreibt eine kreisende, in sich zurücklaufende Bahn. Die bei Landpflanzen häufige Zirkulation findet sich besonders in Zellen, deren Innenräume von Plasmasträngen oder -lamellen durchsetzt sind; das Plasma strömt in ihnen außerdem in bandförmigen, meist verzweigten Streifen des Wandbelages, und zwar hier wie dort nach verschiedenen Richtungen hin.

Von dem in Rotation befindlichen Plasma werden Zellkern und Chromatophoren meist mitgeführt. Doch können letztere an der ruhenden peripheren Schicht haften und infolgedessen unbeweglich sein. So ist es beispielsweise bei den Characeen, Süßwasseralgen, deren lange Gliederzellen in der Gattung Nitella besonders günstige Beispiele für die Beobachtung starker Rotationsströmung sind. Ein sehr gutes Objekt für das Studium der Zirkulation sind die Staubblatthaare von Tradescantia virginica (Fig. 5). Die den Saftraum durchsetzenden Plasmastränge verändern dabei langsam ihre Gestalt und Lage und veranlassen dadurch auch Lageänderungen des Kerns.

Bewegungen an eng umgrenzten Stellen des Plasmas beobachtet man auch in den Protoplasten vieler niederer Algen, besonders ihrer Schwärmzellen: In der Nähe des vorderen Körperendes umschließt das Plasma eine oder mehrere kleine pulsierende Vakuolen, die in kürzeren Zeitabschnitten rhythmisch verschwinden, d. h. plötzlich sich entleeren, darauf aber wieder erscheinen und langsam zur alten Größe heranwachsen (Fig. 335 1 v). Ferner besitzt ihr Plasmakörper einen oder mehrere fadenförmige, kontraktile, plasmatische Fortsätze, Geißeln, Zilien, die sehr lebhaft schwingen und die Bewegungsorgane der Schwärmzellen sind.

Der Protoplast ist nur innerhalb ziemlich enger Temperaturgrenzen aktiv lebenstätig (also auch strömungsfähig) und innerhalb etwas weiterer lebensfähig. Er stirbt, d. h. gerinnt, erstarrt in der Regel rasch bei Temperaturen, die nicht weit über +50° liegen. Auch durch Alkohol, durch Säuren von bestimmter Konzentration, durch Lösungen von Sublimat und vielen anderen Schwermetallsalzen wird das Protoplasma zum raschen Erstarren gebracht, fixiert. Solche Gerinnungs- und Fixierungsmittel spielen jetzt eine große Rolle in der mikroskopischen Technik[9].

Fig. 5. Eine Zelle aus einem Staubblatthaare von Tradescantia virginica. Innerhalb der Stränge als dunkle Körner Leukoplasten und der runde Zellkern. Vergr. 240. Nach STRASBURGER.
C. Chemische Eigenschaften des Protoplasten[10]. Das in Tätigkeit befindliche Protoplasma reagiert gewöhnlich alkalisch, unter Umständen auch neutral, niemals aber sauer. Es ist nicht ein einheitlicher chemischer Körper, sondern besteht aus einem Gemische einer großen Zahl chemischer Verbindungen, die zum Teil in Wasser gelöst, zum Teil fest sind. Ein Teil davon erfährt im aktiv lebenstätigen Protoplasma fortdauernd Veränderungen, auf denen ohne Zweifel viele wichtige Lebensäußerungen des Protoplasten beruhen. Die wichtigsten Bestandteile in diesem Gemische sind wohl die Eiweißkörper (Eiweißstoffe, Proteïne, und Eiweißverbindungen,[S. 12] Proteïde). So gibt das Protoplasma Eiweißreaktion und läßt beim Verbrennen infolge seines Stickstoffgehaltes Ammoniakdämpfe entweichen. Und zwar ist in dem Protoplasma eine ganze Reihe von Eiweißstoffen aufgefunden worden. Im Zellkerne herrschen die Nukleoproteïde, phosphorhaltige Eiweißverbindungen, vor, die von Pepsinlösung nicht aufgelöst werden. Weiter enthält das Protoplasma wohl stets Spaltungsprodukte der Eiweiße, vor allem Amide; außerdem Enzyme, Kohlehydrate und ölartige Körper (Lipoide), wie Fette und Lezithine (vgl. S. 222); ferner Phytosterine (aromatische Alkohole von der Formel C27H45OH) und unter Umständen Alkaloide (heterozyklische, stickstoffhaltige Pflanzenbasen) oder Glykoside (esterartige Verbindungen der Zucker meist mit aromatischen Verbindungen). Daß auch Mineralstoffe im Protoplasma nicht völlig fehlen, geht daraus hervor, daß es Asche hinterläßt.

Durch verdünnte Kalilauge werden alle Teile des Protoplasten gelöst, ebenso durch Chloralhydrat oder JAVELLEsche Lauge. Durch Jod werden sie bräunlichgelb gefärbt, durch eine Lösung von salpetersaurem Quecksilberoxydul (dem sog. MILLONschen Reagens) ziegelrot. Die Reagenzien töten das Protoplasma, worauf sich erst die charakteristische Reaktion einstellt. Diese Reaktionen weisen auf Eiweißkörper hin, sind ihnen aber nicht ausschließlich eigen.

D. Bau der Teile des Protoplasten. Sehr wichtige Hilfsmittel für die Erforschung der Teile des Protoplasten bilden die Fixierungs- und Färbeverfahren. Gewisse Gerinnungsmittel fixieren und härten nämlich das Protoplasma anscheinend wenig verändert. Man hat aber stets darauf zu achten, daß bei der Fixierung auch Strukturen auftreten, die erst durch die Gerinnung entstehen[11].

Der Wert der Färbungen beruht darauf, daß die verschiedenen Bestandteile des Protoplasmas mit ungleicher Begierde Farbstoffe aufnehmen und mit größerer oder geringerer Kraft festhalten, wenn man ihnen die Stoffe durch Lösungsmittel wieder zu entziehen sucht. Viele Farbstoffe werden erst vom toten Protoplasma merklich gespeichert. Zur Färbung der fixierten pflanzlichen Protoplasten bedient man sich vornehmlich der Karminlösungen, des Hämatoxylins, Safranins, Säurefuchsins, Gentianavioletts, Orange, Methylenblaus u. a.

1. Das Plasma (Zytoplasma). In einer anscheinend glasklaren, also optisch homogenen, dünn- oder zähflüssigen Grundmasse des Plasmas, dem Hyaloplasma, sieht man bei stärkeren Vergrößerungen gewöhnlich winzig kleine Körnchen und Tröpfchen in kleinerer oder meist größerer Zahl, die Mikrosomen, eingebettet, die offenbar aus verschiedenartigen Stoffwechselprodukten des Plasmas bestehen. Körnerreiches Plasma bezeichnet man wohl als Körner- oder Polioplasma. Das Hyaloplasma, das selbst mit dem Ultramikroskop optisch nahezu leer erscheint, ist eine wäßrige Lösung der Art, die die physikalische Chemie kolloidale Lösungen oder Sole nennt[12]. Der Nachweis, daß das Protoplasma meist eine kolloidale Lösung, und zwar ein Emulsoid, ist, hat, wie es scheint, grundlegende Bedeutung. Dadurch dürften viele Lebensäußerungen des Plasmas einer physikalisch-chemischen Erklärung zugänglich werden.

An seiner Peripherie ist das Plasma von einer äußerst dünnen, körnchenfreien und oft zäheren Hyaloplasmaschicht umgeben, deren äußerster Saum, die Hautschicht oder Plasmahaut, seine eigentliche äußere Begrenzung bildet. Gegen den Saftraum und andere Vakuolen grenzt es sich ebenfalls durch solche Hyaloplasmaschichten und Plasmasäume, die Vakuolenwände, ab. Diese peripheren Hautschichten und die Vakuolenwände können sich jederzeit neu bilden, sind aber sehr wichtige Bestandteile des Protoplasten; denn sie entscheiden über die Aufnahme von Stoffen in das Protoplasma. Sie sind semipermeabel; d. h. lassen zwar Wasser durch, sind aber für viele andere Stoffe undurchlässig oder schwer durchlässig.

[S. 13]

Ob das lebende Plasma außer der Emulsionsstruktur stets noch eine andere bestimmte und bezeichnende, aber mit dem Mikroskope und Ultramikroskope unsichtbare Struktur besitzt, wissen wir nicht. In sich teilenden Protoplasten treten fadenförmige Sonderungen auf, die in ruhenden Protoplasten wieder unkenntlich werden. Plasma, das fixiert und gefärbt wurde, kann homogen sein oder bildet (bei schlechter Fixierung), wie andere geronnene kolloidale Lösungen, ein Netz-, Gerüst- oder Wabenwerk, in das Körnchen eingelagert sind.

Außer solchen Strukturen sind aber neuerdings im Plasma von embryonalen und Dauerzellen, vor allem nach besonderem Fixierungs- und Färbungsverfahren, noch korn-, stäbchen-, faden-, spindel- oder hantelförmige Gebilde nachgewiesen worden, die in ihrem Aussehen und in ihrem Verhalten gegenüber den Fixierungs- und Färbungsmitteln so sehr mit den Chondriosomen (Mitochondrien) embryonaler tierischer Zellen übereinstimmen, daß man diese Bezeichnung auf sie ausgedehnt hat[13]. Wahrscheinlich sind es verschiedenwertige Dinge, zum Teil kleine, an besonderen, vielleicht nukleïnsäurehaltigen Eiweißkörpern reiche Vakuolen, zum Teil fadenförmige Plasmastränge, zum Teil auch jugendliche Chromatophoren; man hat sie auch bei Pilzen beobachtet und bei gewissen Moosen in den embryonalen Zellen neben den Chromatophoren.

2. Der Zellkern (Nukleus)[14] ist im allgemeinen kugel-, ei- oder linsenförmig gestaltet, kann aber manchmal auch absonderliche, z. B. gelappte Gestalt annehmen oder in gestreckten Zellen selbst fadenförmig werden. In embryonalen Zellen beträgt sein Durchmesser etwa zwei Drittel des Gesamtdurchmessers des Protoplasten. In ausgewachsenen Dauerzellen dagegen macht er, da er nicht mitwächst, in dem größeren Zellraume einen viel kleineren Eindruck. Große Kerne findet man bei den meisten Koniferen und manchen Monokotylen, sowie bei Ranunculaceen und Loranthaceen unter den Dikotylen. Mit besonders großen Kernen sind meist Drüsenzellen ausgestattet. Dagegen sind die Kerne der meisten Pilze (Fig. 6) und vieler Schlauchalgen sehr klein.

Fig. 6. Mehr-(5) kernige Zelle des Pilzes Hypholoma fasciculare. Vergr. 500. Nach KNIEP.

Fig. 7. Eine Zelle von Cladophora glomerata, nach einem mit 1%iger Chromsäure fixierten und mit Karmin gefärbten Präparate. n Kerne. Vergr. 540. Nach STRASBURGER.

Bei höheren Pflanzen kommen fast ausschließlich einkernige Zellen vor. Bei den niederen Pflanzen sind aber vielkernige Zellen sehr verbreitet; ja bei vielen Pilzen (Fig. 6) und bei den Schlauchalgen herrschen sie vor. Der ganze Organismus wird alsdann entweder von einer einzigen solchen vielkernigen Zelle gebildet, die bei einigen Schlauchalgen, wie Caulerpa, äußerlich ungewöhnlich reich gegliedert ist (Fig. 348); oder er besteht aus einer größeren Zahl vielkerniger Zellen, so bei vielen Pilzen (Fig. 6) und z. B. bei der Süßwasseralge Cladophora (Fig. 7).

[S. 14]

Der Zellkern sieht, solange er lebt, fein punktiert aus. Außerdem fallen in ihm meist ein bis mehrere größere, runde, glänzende Körner oder Tropfen auf: die aus Eiweißkörpern bestehenden Kernkörperchen oder Nukleolen (Fig. 2 n), deren Bedeutung wir noch nicht genau kennen. Der Kern, dessen Inhalt zähflüssig zu sein scheint, ist von einer Kernwandung umgeben (Fig. 2 kw), einer Hautschicht, mit der der Kernraum, die Kernhöhle, gegen das umgebende Plasma abgegrenzt ist.

Einen Einblick in die feinere Kernstruktur erhält man nur an entsprechend fixierten und gefärbten Präparaten. Man erkennt alsdann im Kern meist ein stark gefärbtes wabig-netzartiges Gerüstwerk oder Körner aus Chromatin (Fig. 13, 1 n), das vornehmlich aus phosphorhaltigen Eiweißverbindungen (und zwar Nukleoproteïden) zu bestehen scheint. In den Maschen des Gerüstes befinden sich die Nukleolen, die sich ebenfalls intensiv, jedoch meist anders als das Chromatin färben, weil sie meist nicht aus Chromatin bestehen. Das Gerüstwerk und die Nukleolen des Kerns liegen innerhalb der Kernhöhle, die mit Kernsaft, wohl einer Eiweißlösung, gefüllt ist.

In vielen Kernen scheint das Kerngerüst aus einer wenig färbbaren Grundmasse, dem Linin, gebildet zu werden, dem das Chromatin als kleine Körnchen eingelagert ist.

Bei Spirogyra unter den Algen, gewissen Flagellaten und Pilzen enthalten vielleicht auch die Kernkörperchen einen Teil des Chromatins, sind also denen der höheren Pflanzen nicht gleichwertig, wie auch ihr Anteil an den Kernteilungsvorgängen zeigt[15]. Solche Kerne werden wohl auch als Karyosomkerne bezeichnet.

Welchen Anteil der Zellkern an den Lebenserscheinungen des Protoplasten hat, ist noch ganz unbekannt; jedenfalls aber ist er zum Bestande des Lebens in kernhaltigen Zellen nötig. Sehr große Bedeutung hat er als hauptsächlicher Träger der erblichen Anlagen.

3. Die Chromatophoren[16]. In den embryonalen Zellen sind die Chromatophoren kleine, farblose, stark lichtbrechende Gebilde von Tropfen-, Körner-, Spindel- oder Fadenform, die sich vornehmlich in der Nähe des Zellkerns (Fig. 2 ch) aufhalten. In Dauerzellen sind sie meist zu Chloroplasten, Leukoplasten oder Chromoplasten umgebildet, die man wegen dieses gleichen Ursprunges ebenfalls Chromatophoren nennen kann.

Fig. 8. Zwei Zellen mit Chlorophyllkörnern (cl) aus dem Blatt des Laubmooses Funaria hygrometrica. n Zellkerne. Vergr. 300. Nach SCHENCK.

Fig. 9. Netzförmiger Chlorophyllkörper der Süßwasseralge Cladophora arcta mit py Pyrenoïden, k Kerne. Nach SCHMITZ.

a) Chloroplasten. In peripherischen, dem Lichte ausgesetzten Teilen der Pflanze gehen aus den Chromatophoren der embryonalen Zellen in der Regel grüne Chloroplasten oder Chlorophyllkörper hervor. Ihnen verdanken die grünen Pflanzen ihre Farbe und auch ihre Befähigung zur Kohlensäureassimilation. Die Chloroplasten liegen immer im Plasma, meist im[S. 15] plasmatischen Wandbelage der Zellen, und besitzen bei allen höher organisierten Pflanzen die Gestalt ellipsoidischer, etwas abgeflachter Körner (Fig. 8 cl) Chlorophyllkörner. Bei den Algen sind die Chlorophyllkörper aber oft anders gestaltet, nämlich bandförmig (Fig. 329 C), sternförmig oder plattenförmig, häufig auch netzartig durchbrochen (z. B. Cladophora Fig. 9). Alsdann sind ihnen meist Pyrenoïde (Fig. 9 py) ein- oder angelagert: runde Proteïnkörper, die in bestimmten Fällen einen Eiweißkristall enthalten und mit kleinen schalenförmigen Stärkekörnern sich umhüllen, weshalb die Pyrenoïde auch Stärkeherde genannt werden. Nach längerer Belichtung findet man in den Chloroplasten der meisten Pflanzen eine geringere oder größere Zahl sehr kleiner Stärkekörnchen (Assimilationsstärke Fig. 15) und außerdem oft ölartige Tröpfchen, die vielleicht aus Aldehyden bestehen. Die Grundmasse der Chloroplasten läßt aber eine feinere Struktur in lebensfrischem Zustande selbst bei den stärksten Vergrößerungen nicht erkennen; sie ist gleichmäßig grün gefärbt.

Der grüne Farbstoff, das Chlorophyll, ist für die Kohlensäurezerlegung in den Chloroplasten unentbehrlich.

Die Untersuchungen aus letzter Zeit[17], namentlich von WILLSTÄTTER und seinen Schülern, haben ergeben, daß in den Chloroplasten im ganzen vier Farbstoffe vorhanden sind: Zwei sehr nahe verwandte grüne Pigmente, das Chlorophyll a und b, im Mengenverhältnis von etwa 3 : 1, und, in wesentlich geringerer Menge, zwei gelbe Farbstoffe. Die Chlorophylle sind Ester des Phytols, eines Alkohols von der Formel C20H39OH, und einer Trikarbonsäure, also hochmolekulare Verbindungen von Kohlenstoff, Sauerstoff und Wasserstoff, in deren Aufbau noch Stickstoff und Magnesium, entgegen früheren Annahmen aber kein Phosphor und kein Eisen eingeht. Das blaugrüne Chlorophyll a entspricht der Formel C55H72O5N4Mg + 1⁄2 H2O; das gelbgrüne Chlorophyll b hat die Zusammensetzung C55H70O6N4Mg. Die gelben Pigmente sind orangerote, kristallisierende Karotine (Kohlenwasserstoffe von der Zusammensetzung C40H56), von denen eines z. B. auch in den Möhrenwurzeln vorkommt, und gelbe, ebenfalls kristallisierbare Xanthophylle (Oxyde der Karotine: C40H56O2). An der Assimilation der Kohlensäure sind aber nur die Chlorophylle beteiligt.

Alle vier Farbstoffe lassen sich aus den frischen oder getrockneten Chloroplasten mit verschiedenen Lösungsmitteln ausziehen, z. B. mit Azeton oder 80–90% Alkohol; am schnellsten kann man eine intensive Lösung aller Pigmente aus frischen Laubblättern erhalten, wenn man sie mit siedendem Alkohol übergießt. Solche Lösungen sind infolge des Gehaltes an Chlorophyllen im durchfallenden Lichte smaragdgrün, bei auffallendem Lichte durch Fluoreszenz blutrot[18]. Ihr Spektrum (Fig. 245) ist durch vier Absorptionsbänder im weniger brechbaren (roten) Teile und drei im stärker gebrochenen (blauen) ausgezeichnet. Die einzelnen Pigmente lassen sich durch Ausschütteln dieser Lösungen voneinander trennen. Wird z. B. die alkoholische Lösung mit Benzol geschüttelt, so nimmt dieses die Chlorophylle auf und sammelt sich als grüne Lösung über dem nun gelb gefärbten Alkohol an. Die Menge des in grünen Pflanzenteilen vorhandenen Chlorophyllgrüns ist nur gering; sie macht nach WILLSTÄTTER 0,5–1% der Trockensubstanz aus.

Bei manchen viel kultivierten Gewächsformen, den weißbunten (panaschierten) Pflanzen, haben kleinere oder größere Teile der Blätter nicht grüne, sondern weiße oder gelbliche Färbung; ihre Zellen enthalten an Stelle der grünen Chloroplasten farblose oder gelbliche Chromatophoren.

Viele Algen sind nicht grün, sondern anders gefärbt. In den blaugrünen, spangrünen, blauen, seltener violetten Spaltalgen und in den roten, violetten oder rotbraunen Chloroplasten der Rotalgen sind nämlich neben den vier Farbstoffen der grünen Chlorophyllkörper auch noch ein blauer Farbstoff, das Phykozyan, und ein roter, das Phykoerythrin, allein oder seltener nebeneinander vorhanden. Beide sind nach Abtötung der Zellen schon in Wasser löslich, dem ein wenig Alkali oder Neutralsalz zugesetzt ist, und fluoreszieren sehr schön. Um Spaltalgen, die man auf Papier trocknet, bildet das Phykozyan oft einen blauen Saum. Beide Farbstoffe sollen Proteïde sein. Über ihre Bedeutung ist wenig Sicheres bekannt[19]. Bei den Braunalgen kommt die Farbe der braunen oder gelben Chloroplasten dadurch zustande, daß in ihnen außer[S. 16] Chlorophyll a und sehr wenig Chlorophyll b etwa gleich viel gelbe Farbstoffe, nämlich Karotin, Xanthophyll und außerdem in überwiegender Menge auch noch das dem letzten verwandte rotbraune Phykoxanthin (C40H54O6), vorhanden sind[20].

Die Verfärbungen[21], die die Blätter unserer Holzgewächse im Herbste vor dem Blattfall erfahren, sind mit einer Zersetzung der Chloroplasten und des Chlorophyllfarbstoffes verbunden. In den Protoplasten findet man alsdann außer wäßriger, oft rotgefärbter Flüssigkeit nur noch einige Öltröpfchen, Kristalle und gelbe, stark lichtbrechende Kugeln. Anders steht es bei solchen Nadelhölzern, deren Blätter im Winter sich bräunen, um im nächsten Frühjahr wieder zu ergrünen; hier gehen in den Farbstoffen der Chloroplasten Umwandlungen vor, die im Frühling wieder rückgängig gemacht werden. Die Bräunung absterbender Laubblätter ist eine postmortale Erscheinung, bei der braune wasserlösliche Farbstoffe auftreten.

In den nicht grünen phanerogamen Schmarotzern werden die Chloroplasten nicht ausgebildet, sondern durch farblose, auch wohl bräunliche oder rötliche Chromatophoren ersetzt, die übrigens bei manchen dieser Gewächse noch Spuren von Chlorophyll enthalten können. Bei den Pilzen fehlen die Chromatophoren ganz, wie schon hervorgehoben wurde.

Fig. 10. Zelle aus der Epidermis der Commelinacee Rhoeo discolor. n Kern mit Kernkörperchen k, umgeben von Leukoplasten l. Vom Kern gehen Plasmastränge nach dem unsichtbaren wandständigen Plasmabelag aus. Vergr. 240.

Fig. 11. Zelle mit Chromoplasten von der Oberseite des gelb gefärbten Kelches der Kapuzinerkresse (Tropaeolum majus). Vergr. 540. Nach STRASBURGER.

Fig. 12. Chromoplasten aus der Möhrenwurzel, zum Teil mit Stärkeeinschlüssen. Vergr. 540. Nach STRASBURGER.

b) Leukoplasten. In vielen Teilen der Pflanzen, namentlich solchen, zu denen das Licht nicht gelangt, werden die Chromatophoren zu farblosen Leukoplasten. Sie sind in vielen Zellen winzig klein (Fig. 5, 10 l), kugelig, eiförmig oder nicht selten durch einen eingeschlossenen Eiweißkristall gestreckt (Fig. 28 B kr). Dem Lichte ausgesetzt wandeln sie sich häufig in Chloroplasten um, so in den äußeren Partien belichteter Kartoffelknollen und in manchen Erdwurzeln. Auch die Leukoplasten haben, wenigstens in vielen Zellen, besondere Funktionen, nämlich die, Zucker in Stärke umzuwandeln, die in ihnen als Körner auftritt, weshalb man die Leukoplasten auch als Stärkebildner bezeichnet.

c) Chromoplasten gehen entweder direkt aus den farblosen Chromatophoren der Embryonalzellen oder aus zuvor ausgebildeten Chloroplasten hervor und bedingen die gelbe und rote Färbung vieler Pflanzenteile, besonders von Blüten und Früchten. Sie können wie die Chloroplasten rundliche Körner sein; doch sind sie oft kleiner und stets gelb oder orangerot gefärbt. Diese Färbung rührt entweder von gelben Xanthophyllen oder von leicht auskristallisierenden, orangeroten Karotinen her. Die Farbstoffe[S. 17] sind nicht gleichmäßig in ihrem Körper gelöst; vielmehr findet man in einer farblosen, plasmatischen Grundsubstanz (dem Stroma) des Chromoplasten viele winzige Tröpfchen (Grana) davon[22]. Die Farbstoffe, namentlich die Karotine, kristallisieren aber auch oft aus; alsdann sind die Chromoplasten nadelförmig oder zu dreieckigen oder rhombischen Plättchen gestreckt (Fig. 11, 12).

Nach Herkunft und Bedeutung noch nicht genügend bekannt ist der rote Augenfleck, den man in den Zellen vieler Algen, besonders in ihren Schwärmzellen, neben dem Chloroplasten und meist mit ihm verbunden findet (Fig. 335 1 a). Manche Forscher glauben, daß er als Chromoplast aufzufassen ist und zur Wahrnehmung des Lichtes, gewissermaßen als Auge, dient. Der rote Farbstoff, Hämatochrom genannt, ist nichts anderes als Karotin.

E. Ursprung der Elemente des Protoplasten[6]. Alle lebenden Elemente des Protoplasten, das Plasma, die Zellkerne und die Chromatophoren, stammen ab von gleichnamigen Elementen; eine freie Neubildung findet nirgends statt. Sie nehmen an Masse zu durch Wachstum; sie vermehren sich aber an Zahl, ebenso wie die Protoplasten selbst, nur durch Teilung oder Abspaltung aus ihresgleichen. Dadurch werden die Eigenschaften der lebenden Bestandteile einer Keimzelle auf alle Zellen des Organismus, so auch wieder auf seine Keimzellen übertragen, und die ununterbrochene Fortdauer des Lebens bleibt erhalten. Die Teilung der Protoplasten wird gewöhnlich eingeleitet durch die Kernteilung. Das Ineinandergreifen der Kern- und Zellteilung in einkernigen Zellen ist notwendig, um jeder Tochterzelle einen Kern zu sichern. In vielkernigen Zellen (z. B. von Algen und Pilzen) ist es nicht notwendig, wenn die Querwand so angelegt wird, daß jedem Tochterprotoplasten die nötigen Kerne ohnedies bei der Teilung zufallen; tatsächlich ist hier oft die Zellteilung nicht von der Kernteilung abhängig.

Es kommt übrigens vor, daß der Protoplast einer Zelle als Ganzes ohne Teilung seine alte Zellhülle aufgibt. Dieser Vorgang, Zellverjüngung genannt, hat mit Zellteilung nichts zu tun.

Solche Zellverjüngung liegt z. B. vor, wenn in der grünen Alge Oedogonium der Protoplast sich abrundet und aus einer Öffnung der alten Zellhaut als nackte Schwärmspore heraustritt, oder wenn die Protoplasten der Sporen von Moosen oder Farnen und der Pollenkörner von Samenpflanzen innerhalb ihrer Zellhäute sich mit neuen Membranen umgeben und mit diesen neuen Hüllen selbständig werden, während die ursprünglichen Zellwände der Zerstörung anheimfallen.

1. Typische Teilung des Protoplasten. a) Kernteilung. Von wenigen Fällen abgesehen vermehren sich die pflanzlichen Zellkerne durch mitotische oder indirekte Teilung, einen Vorgang, der auch als Karyokinese bezeichnet wird. Er spielt sich in ziemlich verwickelter Weise ab und ist vor allem an fixierten und gefärbten Schnitten näher studiert worden.

Indirekte Kernteilung[23]. Sie stimmt in ihren Hauptzügen bei höher organisierten Pflanzen und Tieren überein. Fig. 13 stellt ihre Stadien in etwas schematisierten Bildern so dar, wie sie in embryonalen vegetativen Zellen solcher Pflanzen aufeinander folgen.

Das feine Gerüstwerk des ruhenden Zellkerns aus (Linin und) Chromatin (Fig. 13, 1 n) sehen wir auf einzelne Punkte des Chromatinnetzes sich zusammenziehen (Spiremstadium) und in eine bestimmte Anzahl von fadenartigen Gebilden sich sondern (2 ch), die zunächst unregelmäßig begrenzt sind, aber allmählich dichter werden und nun bestimmte Farbstoffe noch stärker speichern (3, 4). Wir bezeichnen diese fadenförmigen Gebilde des Kerns als Chromosomen. Sie spalten sich längs (5); etwas später werden sie dicker,[S. 18] kürzer und glattrandig (6), worauf sie nach der Mitte der Zelle befördert werden und sich hier zur Kernplatte oder Äquatorialplatte (7 kp), einer sternförmigen Figur (dem Aster), anordnen, die meist in der künftigen Teilungsebene der Zelle liegt (Flächenansicht Fig. 14).

Während das Kerngerüst in die einzelnen Chromosomen sich sondert, legen sich der Kernwandung von außen Plasmafäden an und umgeben sie mit einer faserigen Schicht, die sich mehr und mehr an zwei gegenüberliegenden Seiten der Kernwand sammelt und hier die Polkappen (6 k) bildet. In ihnen neigen die Fasern nach den Endpolen der ganzen Teilungsfigur zusammen, indem sie sich zu zugespitzten Büscheln strecken. Alsdann wird das Kernkörperchen (1 nl) und die Kernwandung (1 w) aufgelöst, worauf die Fasern der Kappen in die Kernhöhle hineinwachsen (7). Sie endigen dort entweder, wie es scheint, an den Chromosomen oder treffen mit den Enden aufeinander und verlaufen dann als ununterbrochene Fäden von einem Pole zum anderen. Hiermit ist die Kernspindel (7 s) aus den Spindelfasern fertiggestellt.

Fig. 13. Aufeinanderfolgende Stadien der Kern- und Zellteilung in einer embryonalen Zelle einer höheren Pflanze. Etwas schematisiert. Als Vorlage dienten Längsschnitte mit Chromosmiumessigsäure fixierter Wurzelspitzen der monokotylen Wasserpflanze Najas marina, nach Färbung mit Eisenhämatoxylin, n Kern, nl Nucleolus, w Kernwandung, pl Plasma, ch Chromosomen, k Polkappen, s Spindel, kp Kernplatte, t Tochterkern, v Verbindungsfäden, z Zellplatte, m neue Scheidewand. Die Chromatophoren sind bei solcher Fixierung und Färbung nicht sichtbar. Vergr. ca. 1000. Nach CLEMENS MÜLLER.
Die beiden Längshälften jedes Chromosoms, die Tochterchromosomen, rücken hierauf in entgegengesetzter Richtung auseinander (8, 9), um die beiden Tochterkerne (10–12 t) zu bilden. Während dieser Wanderung (Diasterfigur) sind die Chromosomen meist U-förmig nach den Polen hin gekrümmt. An den Spindelpolen angelangt, drängen sie sich aneinander. Darauf grenzt[S. 19] sich das umgebende Plasma mit Hautschichten gegen die neuen Kernanlagen ab und bildet ihre Kernwandungen. Innerhalb der Tochterkerne werden die Chromosomen wieder wabig (Dispiremstadium 11) und vereinigen sich miteinander zu einem Gerüstwerk (12), worin ihre Grenzen meist nicht mehr zu erkennen sind, wenn sie auch, wie man annehmen muß, ihre Selbständigkeit nicht einbüßen. Beide Tochterkerne werden dabei größer; es treten auch wieder Nukleolen in Ein- und Mehrzahl in ihnen auf (12).

Durch diesen Teilungsmechanismus ist erreicht, daß die Substanz des Kerns, besonders die der Chromosomen, bei jeder Kernteilung ganz gleichmäßig auf die beiden Tochterkerne, und zwar infolge der Längsspaltung der Chromosomen, so verteilt wird, daß von den einzelnen, in der Längsrichtung aufeinanderfolgenden Chromatinabschnitten eines jeden Chromosoms die eine Hälfte dem einen, die andere Hälfte dem anderen Tochterchromosom mit Sicherheit zufällt. Man schließt daraus, daß das Chromatin für das Leben der Zelle und des ganzen Organismus besonders wichtig ist, nämlich daß die Chromosomen die hauptsächlichsten Träger der vererbbaren Anlagen sind, und daß in jedem Chromosom eine Anzahl verschiedener solcher Anlagen perlschnurartig aneinander gereiht sind.

Die Zahl der Chromosomen in den Kernen einer Pflanzenart ist übrigens eine bestimmte. Abweichende Zahlen kommen aber vor[24]; kleinere rühren zum Teil daher, daß einzelne Chromosomen mit ihren Enden vereinigt bleiben; größere Zahlen kommen zum Teil dadurch zustande, daß sich einzelne Chromosomen quer teilen. Bei den verschiedenen Pflanzenarten ist dagegen die Chromosomenzahl verschieden groß; die kleinste Zahl, die man bisher in den Zellen der höher organisierten Gewächse angetroffen hat, ist sechs; meist aber ist sie viel größer (bis über 130). Sehr häufig sind die Chromosomen eines Kerns untereinander verschieden in Größe und Form (Fig. 14). Solche Unterschiede werden bei allen Kernteilungen festgehalten. Diese Tatsache deutet mit großer Sicherheit darauf hin, daß die Chromosomen ihre Individualität auch im Ruhekern bewahren. Man nimmt jetzt an, daß die untereinander verschieden gestalteten Chromosomen Träger verschiedener Gruppen erblicher Anlagen der betreffenden Pflanzenart sind.

In den untersten Abteilungen des Pflanzenreichs, bei manchen Algen und Pilzen, verläuft die indirekte Kernteilung nicht selten einfacher, indem die Chromatinmasse weniger sorgfältig auf beide Tochterkerne verteilt zu werden scheint und die Spindel ganz oder wenigstens teilweise dem Kern entstammt[14].

Fig. 14. Embryonale Zelle, dem Querschnitt einer Wurzelspitze der Liliacee Galtonia candicans entnommen, mit einer Kernplatte in Polansicht. Die Chromosomen zu Paaren angeordnet. Vergr. 1600. Nach STRASBURGER.
Die Vorgänge, die sich in einem Mutterkerne während der Vorbereitung zur Teilung abspielen, werden als Prophase der Teilung bezeichnet. Sie reichen bis zur Bildung der Kernplatte, vor deren Fertigstellung sich auch die Längsspaltung der Chromosomen vollzieht. Das Stadium der Kernplatte heißt die Metaphase. Das Auseinanderweichen der Tochterchromosomen erfolgt in der Anaphase, die Bildung der Tochterkerne in der Telophase der Teilung. Der Höhepunkt der ganzen Kernteilung, der Vorgang, der zur Bildung quantitativ und qualitativ gleicher Teilungsprodukte führt, liegt offenbar in der Längsspaltung der Chromosomen. Die fortschreitenden Vorgänge der Kernteilung gehen mit dem Auseinanderweichen der Tochterchromosomen in die rückläufigen über. Daher dauert wohl das Stadium der Kernplatte meist längere Zeit an.

Wodurch die Chromosomen während der Karyokinese in der beschriebenen Weise so regelmäßig bewegt werden, wissen wir noch nicht. STRASBURGER nimmt an, daß die[S. 20] Spindelfasern, die an den Chromosomen zu endigen scheinen, durch Verkürzung die Tochterchromosomen aus der Kernplatte nach den Polen ziehen (Zugfasern), während die von Pol zu Pol laufenden Fasern (Stützfasern) gewissermaßen als Stützen der Kernteilungsfigur dienen. Diese Annahmen erklären aber nicht die Bewegungen der Chromosomen nach der Kernplatte hin.

In bestimmten Zellen der Pflanzen und Tiere, die der Fortpflanzung dienen, vollzieht sich als notwendige Folge einer Befruchtung die Kernteilung in besonderer, von der typischen Teilung abweichender Art, die man als Reduktions- oder meiotische Teilung bezeichnet (vgl. S. 172).

Direkte Kernteilung[25]. Außer der mitotischen oder indirekten gibt es wenn auch selten, eine direkte oder amitotische Kernteilung, auch Fragmentation genannt. Sie stellt sich meist als Alterserscheinung an Kernen ein, die aus indirekter Teilung hervorgegangen sind, und ist im wesentlichen eine Durchschnürung des Kernes, wobei die Teilstücke durchaus nicht in ihrer Größe übereinzustimmen brauchen. Lehrreiche Beispiele für direkte Kernteilung sind die Kerne in den langen Gliederzellen der Characeen.

Bei den Characeen folgen die direkten Teilungen der Kerne in den wachsenden Gliederzellen so rasch aufeinander, daß oft perlschnurförmige Reihen zusammenhängender Teilstücke entstehen. Auf die direkte Kernteilung folgt keine Zellteilung. Die direkte Kernteilung kommt übrigens auch bei Samenpflanzen, z. B. bei Tradescantia, der Liliacee Funkia, Impatiens balsamina (der Balsamine) vor.

b) Vermehrung der Chromatophoren. Auch sie erfolgt durch Teilung, und zwar auf direktem Wege durch Einschnürung. Man kann sie am besten an den Chlorophyllkörnern verfolgen. Jedes Chlorophyllkorn liefert dabei zwei gleich große Körner (Fig. 15).

c) Teilung des Plasmas. In den einkernigen Zellen der höher organisierten Gewächse pflegen Kern- und Zellteilungen ineinander zu greifen. Während die Tochterchromosomen sich trennen, bleiben die von Pol zu Pol reichenden Fasern der Kernspindel als Verbindungsfäden zurück (Fig. 13, 9 v), ja sie werden durch Einschaltung neuer sogar noch vermehrt (Fig. 13, 10, 11) und bilden schließlich zusammen einen tonnenförmigen Körper, den Verbindungsfadenkomplex (Fig. 13, 11). Jeder Verbindungsfaden schwillt alsdann in der Äquatorialebene zu einem Körnchen an (Fig. 13, 11); dadurch entsteht die Zellplatte, die also in Seitenansicht wie eine Körnchenreihe aussieht. Ist die Zelle sehr plasmareich oder schmal, so erreicht der Komplex der Verbindungsfäden an der Peripherie allseitig ihre Seitenwände. Aus den verschmelzenden Körnchen der Zellplatte geht alsdann eine plasmatische Schicht hervor, die sich spaltet und in der Spaltungsfläche eine Scheidewand aus Zellhautstoff ausscheidet. Letztere teilt annähernd gleichzeitig, simultan, den Mutterprotoplasten in zwei Tochterzellen (Fig. 13, 12 m).

Fig. 15. Chlorophyllkörner aus dem Blatte des Laubmooses Funaria hygrometrica; ruhend und in Teilung. Im Innern der Körner kleine Stärkekörnchen. Vergr. 540. Nach STRASBURGER.

Fig. 16. Drei Teilungszustände in derselben Zelle der Orchidee Epipactis palustris. Nach dem Leben entworfen. Vergr. 365. Nach TREUB.

Ist dagegen in der Zelle ein größerer Saftraum vorhanden oder ist die Zelle sehr groß, so vermag der Komplex der Verbindungsfäden sie nicht mit einem Male zu durchsetzen; vielmehr bildet er die Scheidewand dann allmählich, succedan, aus (Fig. 16): zunächst etwa einen Teil, der an eine Seitenwand der Mutterzelle anschließt (Fig. 16 A), sodann einen folgenden, wobei er an seinem freien Rande die Zellplatte ergänzt, aber[S. 21] sich von den schon gebildeten Teilen der Scheidewand zurückzieht (B), und so fort und fort, bis der ganze Protoplast durchschnitten und seine Teilung vollendet ist (C). In langen Zellen, die sich längs teilen, z. B. denen des Kambiums, schreitet die Zellwandbildung dagegen von der Zellmitte aus, wo der Kern liegt, succedan allseits nach der Peripherie fort[26].

Es gibt übrigens Fälle, wo die Verbindungsfäden klein an Zahl sind; alsdann werden die Knötchen durch Plasmaplatten zur Zellplatte verbunden.

Bei den Thallophyten werden die Scheidewände der vielkernigen und der einkernigen Zellen dagegen fast niemals in Verbindungsfadenkomplexen gebildet. Sie entstehen vielmehr entweder simultan und zwar in Plasmaplatten, die auf einmal in der ganzen Teilungsebene ausgebildet werden, oder succedan, indem eine ringförmige Leiste aus Membransubstanz allmählich von der Mutterzellwand aus, einer Irisblende ähnlich, in das Zellinnere immer tiefer vordringt (Fig. 17, 18) und es schließlich durchschnürt. In einkernigen Zellen geht auch bei diesem Teilungsvorgang die Teilung des Kerns der Zellteilung voraus; die neue Scheidewand entsteht hierauf in gleichen Entfernungen von den beiden Tochterkernen, und zwar in der Zone, wo ursprünglich der Kern gelegen hatte.

Fig. 17. Eine Spirogyrazelle in Teilung. n Einer der beiden Tochterkerne, w die wachsende Scheidewand, ch ein durch letztere nach innen gedrängtes Chlorophyllband. Vergr. 230. Nach STRASBURGER.

Fig. 18. Stück einer sich teilenden Zelle von Cladophora fracta. w Die wachsende Scheidewand. ch Chromatophoren, k Kerne. Vergr. 600. Nach STRASBURGER.

Bei den nackten Zellen der Myxomyzeten und Flagellaten ist die Teilung eine aktive Durchschnürung des Plasmas.

In vielkernigen Zellen folgt nicht auf jede Kernteilung eine Zellteilung; ja unter den Algen und Pilzen gibt es sogar große, äußerlich nicht selten reich gegliederte Formen, deren Inneres nur von einem einzigen, sehr vielkernigen Plasmaleib gebildet, also überhaupt nicht durch Zellwände gekammert wird.

2. Abarten der typischen Zellteilung. Hier und da im Pflanzenreiche kommen Abweichungen von der typischen Zellteilung vor, so die Vielzellbildung, die Zellsprossung und die freie Zellbildung.

a) Freie Kernteilung und Vielzellbildung. Die Kernteilungen in den vielkernigen Zellen der Thallophyten können bereits als Beispiele für freie, d. h. von Zellteilungen nicht begleitete, Kernteilungen angeführt werden. Aber auch in Pflanzen mit typisch einkernigen Zellen kommen solche freie Kernteilungen vor; besonders lehrreich in bestimmten, sehr großen Zellen der Phanerogamen, den Embryosäcken, in denen der Embryo ausgebildet wird. In den meisten Embryosäcken sieht man den sekundären Embryosackkern sich in zwei Kerne teilen, die samt ihren Nachkommen den Vorgang wiederholen. So entstehen schließlich nicht selten Tausende von Kernen, die sich mit gleichen Abständen in dem plasmatischen Wandbelag des Embryosackes verteilen. Zellteilungen begleiten diese Teilungen nicht. Hört die Größenzunahme des Embryosackes auf, so zerfällt sein protoplasmatischer Wandbelag simultan oder fortschreitend in meist so viele Zellen, wie er Kerne enthält. Dieser Vorgang, der als Vielzellbildung bezeichnet wird, vollzieht sich folgendermaßen: Die Kerne umgeben sich in ihrem ganzen Umkreis[S. 22] mit Verbindungsfäden, so daß sie strahlenden Sonnen gleichen (Fig. 19); in diesen Fadenkomplexen treten gleich weit von den Kernen Zellplatten und in diesen Zellwände auf. Die Vielzellbildung läßt sich von der Zweiteilung ableiten und als ein verkürzter Vorgang auffassen, der durch besondere Verhältnisse (manchmal etwa durch ungewöhnlich rasche Größenzunahme einer Zelle) bedingt sein kann. Durch Vielzellbildung entstehen auch die Fortpflanzungszellen bei vielen Algen und Pilzen.

b) Zellsprossung. Eine Abart der typischen Teilung der Protoplasten, aber mit ihr durch Zwischenstufen verbunden, ist auch die Sprossung. Die Mutterzelle wird dabei nicht halbiert; sie treibt vielmehr einen Auswuchs, der an seiner Ursprungsstelle später durch eine Zellwand abgetrennt wird. So vermehren sich die Zellen der Hefe (Fig. 20), und so entstehen auch die als Konidien und als Basidiosporen bezeichneten Fortpflanzungszellen zahlreicher Pilze (Fig. 398).

Fig. 19. Stück des protoplasmatischen Wandbelags aus dem Embryosack von Reseda odorata, bei beginnender Vielzellbildung. Der Vorgang schreitet von unten nach oben fort. Nach einem fixierten und gefärbten Präparate. Vergr. 240. Nach STRASBURGER.

Fig. 20. Saccharomyces cerevisiae, 1 nicht sprossende, 2 und 3 sprossende Zellen. Vergr. 540. Nach STRASBURGER.

Fig. 21. Aufeinanderfolgende Stadien der Abgrenzung einer Spore im Askus von Erysiphe communis. s Kerngerüst, n Nucleolus. Vergr. 1500. Nach HARPER.

c) Freie Zellbildung. Dieser Vorgang entfernt sich von der gewöhnlichen Zweiteilung der Zellen schon weiter; denn dabei folgt auf die freie Kernteilung eine Bildung von Zellen, die einander nicht berühren und nicht das gesamte Plasma ihrer Mutterzelle in sich aufnehmen. Freie Zellbildung ist z. B. bei der Sporenbildung der Ascomyceten, auch in der Keimanlage einiger nacktsamiger Samenpflanzen (Gymnospermen), wie von Ephedra, und bei der Bildung des Eiapparates und der Antipoden bei den Angiospermen zu beobachten. Bei den Ascomyceten verläuft sie in folgender Weise. Durch freie Teilung des in dem jungen Askusschlauch vorhandenen Kernes und seiner Nachkommen werden in dem Plasma acht Kerne gebildet. Um jeden Kern wird hierauf eine bestimmte Plasmamenge der Zelle gegen die periphere Plasmamasse (Periplasma) durch eine Plasmahautschicht abgegrenzt, die sich mit einer Zellhaut umgibt, so daß acht voneinander getrennte Sporen entstehen (vgl. Fig. 382). Wie die Untersuchungen von HARPER[27] gezeigt haben, geht die Bildung der Hautschichten hierbei von einer zentriolenartigen[S. 23] Plasmaansammlung aus (Fig. 21 A), die dem Spindelpol der vorausgegangenen Teilungsfigur entspricht. Nach dieser Plasmamasse hin ist der Kern schnabelartig lang vorgestreckt. Von ihr aus werden springbrunnenartige Plasmastrahlen entsandt (kp), von denen ein Teil schließlich zu der Hautschicht verschmilzt (B, C, D).

III. Gröbere leblose Einschlüsse der Protoplasten[28].
Abgesehen von den winzigen Mikrosomen, die im Plasma stets vorhanden sind, treten bei der Umwandlung der embryonalen Zellen zu Dauerzellen in allen Protoplasten, vor allem im Plasma und in den Chromatophoren, gröbere leblose Einschlüsse auf. Erwähnt wurde ja schon der Zellsaft, der in kleineren oder größeren Tröpfchen kaum einer pflanzlichen Dauerzelle fehlt. Neben diesen Tröpfchen, die aus wäßrigen Lösungen bestehen, kommen nicht selten auch Fett- oder Öltröpfchen und feste Körper in amorpher Form oder als Kristalle vor. Viele dieser Einschlüsse sind als Reservestoffe für das Leben der Pflanze von großer Bedeutung; namentlich in den Zellen der Speicherorgane (Knollen, Zwiebeln, Samen) häuft die Pflanze solche in großer Menge auf, um sie im Falle des Bedarfs wieder zu verbrauchen. Andere sind Endprodukte des Stoffwechsels, die aber ökologisch noch von großer Wichtigkeit sein können. Von manchen Einschlüssen kennen wir die chemische Zusammensetzung noch nicht.

A. Einschlüsse des Plasmas. 1. Flüssige Einschlüsse des Plasmas. a) Der wäßrige Zellsaft. Wie wir schon wissen, wird als Zellsaft die wäßrige Flüssigkeit in den größeren Vakuolen oder im Saftraume ausgewachsener Pflanzenzellen bezeichnet (Fig. 3 v). Sie ist reicher oder ärmer an sehr verschiedenen gelösten Substanzen, teils Reservestoffen, teils Zwischen- oder Endprodukten des Stoffwechsels; auch feste Einschlüsse, besonders in Form von Kristallen, kommen darin vor. Der Zellsaft kann die gleichen, aber auch andere Stoffe gelöst enthalten wie das Protoplasma und selbst in den Vakuolen einer Zelle verschieden zusammengesetzt sein.

Jeder Zellsaft enthält zunächst anorganische Salze in Lösung, besonders Nitrate, Sulfate und Phosphate. Er reagiert gewöhnlich sauer, und zwar durch die organischen Säuren (Äpfelsäure, C4H6O5, z. B. überall in den Blättern der Fettpflanzen; Weinsäure, C4H6O6; Oxalsäure, C2O4H2 u. a.) oder organischsauren Salze, die in ihm vorkommen.

Zu besonders häufigen Bestandteilen des Zellsaftes zählen ferner die löslichen Kohlehydrate, die vielfach als Reservestoffe angehäuft werden. Unter ihnen herrschen vor die Zuckerarten, vor allem die Disaccharide (C12H22O11) Rohrzucker (Saccharose), Malzzucker (Maltose) und von Monosacchariden (C6H12O6) der Traubenzucker (Glykose). Oft wird Rohrzucker als Reservestoff gespeichert, z. B. in der Mohrrübe, vor allem aber in der Zuckerrübe und dem Stengel des Zuckerrohrs, woraus man ihn infolgedessen gewinnt. Eine ähnliche Rolle spielen andere im Zellsaft gelöste Kohlehydrate, so bei den Kompositen das Inulin, bei Pilzen das Glykogen. Als Zucker wandern auch die Kohlehydrate innerhalb des Pflanzenkörpers.

Glykose oder Maltose haltige Schnitte, die in Kupfersulfatlösung gelegt, dann abgespült und in Kalilauge und Seignettesalzlösung erwärmt worden sind, reduzieren das Kupferoxyd, so daß ein ziegelroter Niederschlag von Kupferoxydul entsteht. Bei Vorhandensein von Rohrzucker wird der Zellsaft nur blau gefärbt. Das Inulin, ein Polysaccharid (C6H10O5)n, kann man mit Alkohol in Form kleiner Kügelchen niederschlagen und in Wasser durch Erwärmen wieder auflösen. Wenn inulinreiche Pflanzenteile, z. B. die Wurzelknollen der Georgine (Dahlia variabilis), in Alkohol oder Glyzerin gelegt werden, so fällt das Inulin in kugeligen Gebilden, vielleicht Sphäriten (Sphärokristallen), aus, die von radialen Spalten durchsetzt sind, leicht in keilförmige Stücke zerfallen und manchmal auch deutlich konzentrisch geschichtet sind.

[S. 24]

Das bei Tieren als Reservestoff sehr verbreitete Kohlehydrat Glykogen, ein Polysaccharid von der Zusammensetzung (C6H10O5)n, kommt als Einschluß des Plasmas im Pflanzenreich nur bei den Pilzen, Myxomyceten und Cyanophyceen in Form von Tröpfchen vor. Bei den Pilzen tritt es an die Stelle anderer Kohlehydrate, z. B. der Stärke und des Zuckers. Jodlösungen färben das Glykogen rotbraun. Die Färbung schwindet größtenteils beim Erwärmen, um bei der Abkühlung wieder aufzutreten.

Schleim, der aus Kohlehydraten besteht, als Reservestoff enthält der Zellsaft häufig in den Zellen von Zwiebeln, z. B. von Allium Cepa und Urginea (Scilla) maritima, ferner in denen der Orchisknollen, doch auch in Zellen oberirdischer Pflanzenteile (Fig. 22), besonders der Fettpflanzen-(Sukkulenten-)Blätter. Schleim kommt aber auch außerhalb der Protoplasten in Zellmembranen vor (vgl. S. 32).

Weiter enthält der Zellsaft als Reservestoffe oder als Zwischenprodukte des Stoffwechsels ganz allgemein auch Amide, vor allem das Asparagin, vielfach auch Eiweißstoffe (für deren Reaktionen vgl. S. 12).

Mit konzentrierten Lösungen von Gerbstoffen[29] gefüllte, stark lichtbrechende und unter Umständen sehr große Vakuolen sind im Plasma vieler Zellen, besonders Rindenzellen, vorhanden; auch Alkaloide, Glykoside (vgl. S. 12) und den Glykosiden verwandte Bitterstoffe sind nicht selten im Zellsafte gelöst. Das alles sind meist Endprodukte des Stoffwechsels.

Als Gerbstoffe werden Gemische sehr verschiedenartig zusammengesetzter aromatischer Verbindungen bezeichnet, die oft Glykoside sind. Besonders verbreitet bei den Pflanzen kommen in glykosidischer Bindung die Gallussäure, die Gallusgerbsäure (Digallussäure oder Tannin) und die Ellagsäure vor. Die dunkelblaue oder grüne Färbung mit Ferrichlorid- oder Ferrisulfatlösung, der rotbraune Niederschlag mit wäßriger Kaliumbichromatlösung gelten im allgemeinen als Gerbstoffreaktionen. Freilich reagieren auch einige andere Stoffe so. Die Gerbstoffe werden in den Pflanzen meist nicht weiter verarbeitet. Infolge ihrer fäulniswidrigen Eigenschaften dienen sie öfters zur Imprägnierung von Zellhäuten, die länger ausdauern sollen.

Vielfach ist der Zellsaft gefärbt, besonders durch Anthozyane, eine Gruppe stickstoffreier Glykoside. Sie sind rot in sauren, blau in schwach alkalischen Zellsäften; unter Umständen sind sie auch dunkelrot, violett (so in neutralem Zellsaft), dunkelblau, selbst schwarzblau gefärbt. Alkalien wandeln die Farbe oft in grün um. Bei einer sehr großen Anzahl intensiv gefärbter Pflanzen sind die Anthozyane auch kristallinisch oder amorph ausgeschieden. Seltener findet man, im Zellsaft gelöst, auch gelbe Farbstoffe, die Anthochlore[30], z. B. in den Zellen der gelben Blütenblätter der Primeln, des gelben Fingerhutes, der Löwenmäulchen, der Königskerze; oder auch ein braunes Pigment, das Anthophaein, z. B. in den Zellen der schwarzbraunen Flecken in den Saubohnenblüten.

Einsicht in die chemische Konstitution der Anthozyane verdankt man vor allem den Untersuchungen von WILLSTÄTTER und seinen Schülern[31]. Danach sind es meist Glykoside, in denen an Zucker aromatische Farbstoffkomponenten, die Zyanidine, gebunden sind, z. B. bei der Kornblumenblüte das Zyanidin (C15H10O6), bei der Blüte des Rittersporns das Delphinidin (C15H10O7). Die Zyanidine, die auch frei in Zellsäften vorkommen können, sind Hydroxylverbindungen eines Phenylbenzopyryliums; sie sind den Flavonen verwandt, die in Pflanzen sehr weit verbreitet sind. In roten Blüten sind die Zyanidine an Säuren gebunden, in blauen an Alkalien; in violetten sind es neutrale Farbstoffe. Auch die Anthochlore sind Glykoside mit aromatischen Farbstoffkomponenten, die zu den Flavonen gehören, oder solche freien Flavone[30].

„Blutfarbige“, d. h. braune Laubblätter, z. B. die der Blutbuchen, Bluthaselnüsse u. a., verdanken ihre eigenartige Färbung dem Zusammenwirken von rotem Anthozyan und grünen Chlorophyllkörnern. Auch die Rötung der Laubblätter im Herbste beruht auf Anthozyanbildung.

Bei den Blüten und Früchten kommen die verschiedenen Farben, die im allgemeinen der Anlockung von Tieren dienen und deshalb als Lockfarben bezeichnet werden, durch die Farben der Zellsäfte, die Verteilung[S. 25] der farbstoffhaltigen Zellen, durch Chromoplasten, endlich auch oft durch die Kombination der gelösten Farbstoffe mit gelben, gelbroten oder roten Chromoplasten und grünen Chloroplasten zustande.

b) Fettvakuolen. Als Reservestoffe sind die Fette (fetten Öle) im Pflanzenreiche so verbreitet, daß ungefähr neun Zehntel aller Phanerogamen sie im Plasma ihrer Samen und zwar als feinste, optisch nicht nachweisbare Emulsion speichern. In besonders fettreichen Samen macht das Öl bis zu 70% der Trockensubstanz aus. Fette können aber auch als stark lichtbrechende Tröpfchen (Fettvakuolen) im Plasma auftreten, so z. B. in den keimenden Samen. Die Fette sind Gemische vieler Glyzerinester von Fettsäuren, besonders der Palmitinsäure (C16H32O2), der Stearinsäure (C18H36O2), der Ölsäure (C18H34O2) u. a. Mit diesen Reservestoffen wird der Raum der Speicherorgane am besten ausgenutzt, da das Fett einen besonders großen Energievorrat gegenüber anderen Speicherstoffen hat.

c) Vakuolen mit ätherischen Ölen und Harzen[32]. Auch sie bilden stark lichtbrechende Tröpfchen; z. B. im Zellinhalt zahlreicher Blumenblätter, in Rhizomen verschiedener Pflanzen (Acorus calamus, Zingiber officinale), in Rinden (Cinnamomum), in Blättern (Laurus nobilis), endlich in Fruchtschalen und Samen (Piper nigrum, Illicium anisatum). Die Wände solcher Zellen sind nicht selten verkorkt. Die ätherischen Öle sind vor allem Gemische von Terpenen (C10H16)1 bis n und Terpenderivaten nebst gewissen Estern, Phenolen, Phenolderivaten und höheren Alkoholen; die Harze sind Gemische von Terpenen und Harzsäuren, die durch Oxydation aus den Terpenen entstehen. Ätherische Öle und Harze haben fäulniswidrige Eigenschaften. Die ätherischen Öle der Blüten locken durch ihren Duft die bestäubenden Insekten an. Unter Umständen nimmt das Öl auch Kristallform an, z. B. in den Blumenblättern der Rose.

2. Feste Einschlüsse des Plasmas. a) Kristalle von Kalziumoxalat, Ca(CO2)2 mit zwei oder sechs Mol. Kristallwasser, kommen in sehr vielen Pflanzen vor. Sie werden, als Endprodukte des Stoffwechsels, wohl meist im Zytoplasma (oder seltener im Zellsafte kleinerer oder größerer Vakuolen) angelegt, liegen später aber sehr oft im Zellsaftraum und nehmen unter Umständen schließlich fast die ganze Zelle ein. In letzterem Falle sind die übrigen Bestandteile der Zelle sehr reduziert, die Zellwände nicht selten verkorkt. Es bilden sich entweder große Einzelkristalle (Fig. 132 k, 173 Bk, 182 k), deren Formen leicht zu erkennen sind, oder viele winzige Kriställchen, die so zahlreich sein können, daß sie als Kristallsand die Zelle anfüllen, oder viele, Rhaphiden genannte Kristallnadeln, die parallel nebeneinander liegen und in der Zelle Rhaphidenbündel bilden (Fig. 22), oder schließlich morgensternförmige Kristalldrusen (Fig. 132 k′, 184 k). Bei jeder Pflanzenart herrschen bestimmte Kristallformen vor.

Die großen Einzelkristalle gehören dem tetragonalen oder dem monosymmetrischen Kristallsystem an. Im ersteren Fall enthalten sie 6 Mol., im letzteren 2 Mol. Kristallwasser. Der Konzentrationsgrad der Lauge, aus der die Kristalle entstehen, soll es oft bedingen, ob sie sich nach dem einen oder nach dem anderen System bilden. Besonders häufig begegnet man den morgensternförmigen Kristalldrusen, aus vielen Kristallen zusammengesetzt, die von einem organischen Kern ausstrahlen. Bei monokotylen Gewächsen, doch auch bei zahlreichen Dikotylen, sind die nadelförmigen, monoklinen Rhaphiden verbreitet (Fig. 22). Ein solches Bündel ist stets in eine große, mit Schleim gefüllte Vakuole eingeschlossen. Die Oxalatkristalle sind ohne Aufbrausen löslich in Salzsäure, aber unlöslich in Essigsäure.

Fig. 22. Eine mit Schleim und einem Rhaphidenbündel gefüllte Zelle aus der Rinde von Dracaena rubra. r das Rhaphidenbündel. Vergr. 160. Nach SCHENCK.
[S. 26]

Auch Kieselkörper, die sich nur in Fluorwasserstoffsäure lösen lassen, werden in manchen Zellen, besonders bei Gräsern, Palmen und Orchideen, gebildet. Sie füllen oft fast die ganze Zelle aus.

b) Kleber und Eiweißkristalle. In saftigen Reservestoffbehältern werden vor allem gelöste Eiweißkörper als Reservestoffe im Zellsaft gespeichert. Man kann solche z. B. in den Zellen der Kartoffelknolle mit Alkohol als feinkörnigen Niederschlag fällen. In trockenen Reservestoffbehältern aber, so namentlich in zahlreichen fetthaltigen Samen, werden die Eiweißkörper zu festen Körnern, den Kleber-, Proteïn- oder Aleuronkörnern (Fig. 23), die in fettreichen Samen besonders groß sind. Sie gehen aus Vakuolen hervor, deren Eiweißgehalt allmählich steigt, schließlich bei Wasserverlust in Form eines rundlichen Korns oder in einzelnen Fällen eines unregelmäßigen, sogar gelappten Gebildes erstarrt, und bestehen vornehmlich aus Globulinen[33]. Diese Eiweißstoffe kristallisieren in vielen Fällen teilweise aus und bilden einen, selten mehrere, im Aleuronkorn eingeschlossene Kristalle (Fig. 23 k). Besonders groß werden diese Kristalle in den Aleuronkörnern der Para„nüsse“ (der Samen von Bertholletia excelsa). In Aleuronkörnern mit Eiweißkristallen kommen meist noch rundliche Körner, die Globoide (Fig. 23 g), vor, die wohl ebenfalls aus Eiweißkörpern bestehen, doch verbunden mit dem Kalzium- und Magnesiumsalz (dem Phytin) der organischen Inosithexaphosphorsäure C6H6[O2P(OH)2]6. Globoide liegen übrigens bei manchen Samen auch frei im Plasma. Ferner können Kristalle von Kalziumoxalat in Aleuronkörnern eingeschlossen sein. In den Körnern unserer Getreidearten enthält die äußerste Zellschicht relativ kleine, einschlußfreie Aleuronkörner (Fig. 24 al), das innere Gewebe dagegen fast nur Stärke. Die Aleuronschicht bleibt, bei der Verarbeitung der Körner zu Mehl, an den Körnerschalen haftend in der Kleie zurück, geht also für das Mehl verloren.

Fig. 23. A Zelle aus dem Endosperm des Rizinussamens unter Wasser beobachtet. B Einzelne Aleuronkörner unter Olivenöl, k Eiweißkristall, g Globoid. Vergr. 540. Nach STRASBURGER.

Fig. 24. Äußerer Teil eines Querschnittes durch ein Weizenkorn (Triticum vulgare). p Fruchthülle, t Samenhaut. An die Samenhaut grenzt das Endosperm. In diesem al Aleuronkörner, n Zellkern, am Stärkekörner. Vergr. 240. Nach STRASBURGER.

Die Reaktionen des Klebermehls sind im wesentlichen die nämlichen, die wir früher schon für Eiweißkörper kennen gelernt haben. Mit Jodlösung färbt sich zum Beispiel die Aleuronschicht des Weizenkorns gelbbraun.

Die Eiweißkristalle, die quellbar sind und sich ebenfalls mit Jod gelbbraun färben, gehören dem regulären oder dem hexagonalen Kristallsystem an. Solche Eiweißkristalle können aber auch unmittelbar im Plasma vorkommen, so in peripherischen, stärkearmen Zellen der Kartoffelknollen, ferner in Chromatophoren (Fig. 28) und in Zellkernen, so[S. 27] nicht selten bei der Schuppenwurz (Lathraea) und vielen anderen Scrophulariaceen, sowie den Oleaceen.

B. Einschlüsse der Chromatophoren. Eiweiß- und Farbstoffkristalle haben wir schon als Einschlüsse der Chromatophoren kennen gelernt (Fig. 28 kr). Sehr viel wichtiger aber ist die Stärke[34]. Fast alle höher organisierten Pflanzen bilden nämlich am Licht in ihren Chloroplasten Stärke, und zwar in Körnerform aus. Die Körner treten hier in Mehrzahl auf (Fig. 15), werden aber nur ausnahmsweise groß, weil sie bald nach ihrer Entstehung wieder aufgelöst werden, und sind meist aus noch kleineren Körnchen zusammengesetzt. Große Stärkekörner findet man nur in den Reservestoffbehältern, also dort, wo Stärke aus zugeführter, assimilierter Substanz gebildet wird. Man bezeichnet solche Stärke als Reservestärke im Gegensatz zu der Assimilationsstärke der Chloroplasten. Auch sie entsteht, und zwar aus Zucker, nur in Chromatophoren, den uns schon bekannten Leukoplasten (S. 16), die man daher auch als Stärkebildner bezeichnet.

Alle Stärke des Handels ist Reservestärke. Ihre Menge in einem Reservestoffbehälter ist oft sehr groß: sie macht etwa bis 20% des Gesamtgewichts bei der Kartoffelknolle und sogar bis 70% beim Weizen aus. Reines Stärkemehl, das nur aus Stärkekörnern besteht, gewinnt man durch Auswaschen aus zerkleinerten Reservestoffbehältern. Im gewöhnlichen Mehl aber sind auch die zermahlenen Zellhäute und Protoplasten dieser Behälter enthalten.

Fig. 25. Stärkekörner aus der Kartoffelknolle. A Ein einfaches, B ein halb zusammengesetztes Stärkekorn, C und D ganz zusammengesetzte Stärkekörner. c Der Bildungskern des Stärkekornes. Vergr. 540. Nach STRASBURGER.

Fig. 26. Stärkekörner aus den Kotyledonen von Phaseolus vulgaris. Vergr. 540. Nach STRASBURGER.

Fig. 27. Stärkekörner des Hafers (Avena sativa). Ein zusammengesetztes Korn und Teilkörner aus einem solchen. Vergr. 540. Nach STRASBURGER.

Die Reservestärke besteht aus flachen oder rundlichen (eiförmigen oder kugelrunden) Körnern, die in den Speicherorganen verschiedener Pflanzen sehr ungleich groß sind, wie schon ein Vergleich der gleich stark vergrößerten Figuren 25–27 zeigt; ihre Größe schwankt zwischen 0,002 und 0,17 mm. Die größten sind bereits mit dem bloßen Auge als helle Körperchen zu erkennen. Verhältnismäßig große Stärkekörner, im Mittel mit einem Durchmesser von 0,09 mm, enthalten die Kartoffelknollen. Sie sind (Fig. 25) hier deutlich geschichtet. Die Schichtung wird durch die verschiedene Dichte der Kornsubstanz verursacht und ist exzentrisch: es wechseln dickere, dichtere Lagen, die im durchfallenden Lichte heller sind, mit dünneren, weniger dichten und dunkleren ab, und zwar ist der organische Initialpunkt oder Bildungskern, um den die Schichten sich gelagert haben, dem einen Rande[S. 28] des Kornes bedeutend genähert. Dagegen sind die Stärkekörner der Hülsenfrüchte und der Getreidearten zentrisch geschichtet: ihr Bildungskern liegt in der Mitte. Die deutlich geschichteten Stärkekörner der Bohne (Phaseolus vulgaris, Fig. 26) werden außerdem meist von radialen Spalten durchsetzt. Beim Weizen sind sie in einer und derselben Zelle von zweierlei, sehr verschiedener Größe als undeutlich geschichtete linsenförmige Großkörner und winzige kugelförmige Kleinkörner ausgebildet. Die bisher betrachteten Reservestärkekörner sind einfach. Es gibt aber auch halb zusammengesetzte und ganz zusammengesetzte. Die ersteren enthalten zwei oder mehr Teilkörner, die von gemeinsamen Schichten umgeben sind: die letzteren bestehen nur aus Teilkörnern ohne gemeinsame Schichten. Halb zusammengesetzte (Fig. 25 B) und ganz zusammengesetzte (Fig. 25 C, D) Stärkekörner kommen in der Kartoffelknolle vereinzelt zwischen den einfachen vor. In anderen Fällen sind ganz zusammengesetzte Stärkekörner fast allein vorhanden, so z. B. im Haferkorn (Fig. 27) oder im Reiskorn. 4–100 Teilkörner setzen die Stärkekörner beim Reis, bis 300 beim Hafer, gelegentlich bis 30000 bei Spinacia glabra zusammen. Die Stärkekörner haben also bei jeder Pflanzenart eine für sie bezeichnende Form.

Der Bau der Stärkekörner erklärt sich aus ihrer Bildungsgeschichte. Bleibt das Stärkekorn während seines Wachstums von der Substanz der Leukoplasten gleichmäßig umhüllt, so wächst es gleich stark nach allen Seiten und erhält zentrischen Bau. Gelangt es während seines Wachstums an die Peripherie des Stärkebildners, so wächst es dort stärker, wo die Substanz des Leukoplasten es in größerer Dicke umgibt, und wird exzentrisch (Fig. 28). Zusammengesetzte Körner bilden sich dann, wenn in einem Leukoplasten gleichzeitig mehrere Stärkekörner nebeneinander entstehen, die bei weiterem Wachstum zusammenstoßen. Werden um die Teilkörner noch gemeinsame Schichten abgelagert, so kommt ein halb zusammengesetztes Korn zustande.

Die Stärkekörner sind aus Kohlehydraten von der Zusammensetzung (C6H10O5)n aufgebaut. Soll die Stärke im Stoffwechsel weiter verwertet werden, so löst die Pflanze sie durch ein Enzym, die Diastase, wieder auf; die Stärke wird dabei in Zucker (Maltose) umgewandelt.

Fig. 28. Leukoplasten aus der oberirdischen Knolle der Orchidee Phajus grandifolius. A, C und D von der Seite, B von oben gesehen. st Stärke, kr Eiweißkristall. Vergr. 540. Nach STRASBURGER.
Die Stärkekörner hält man für kristallinische Gebilde, Sphärokristalle oder Sphärite, die aus miteinander verwachsenen, feinen, radial angeordneten und büschelig verzweigten Kristallnadeln der α- und β-Amylose aufgebaut sein sollen. Die Schichtung ist der Ausdruck von Form- und Mengenverschiedenheiten der Kristallnadeln in den aufeinander folgenden Schichten. Im polarisierten Lichte zeigen die Stärkekörner, ähnlich wie anorganische Sphärite, ein dunkles Kreuz. Auch Röntgenogramme der Stärkekörner sprechen vielleicht für deren kristallinischen Bau.

Die Stärkekörner werden meist durch wasserhaltige Jodlösungen zunächst blau, schließlich fast schwarz gefärbt; weinrot färben sich aber z. B. die des Klebreises. Sie verquellen bei gewöhnlicher Temperatur leicht in Kali- oder Natronlauge und in Chloralhydratlösung, außerdem unter Kleisterbildung in Wasser von 60–80° C. Lösung, d. h. Umwandlung in Zucker ohne vorausgehende Quellung, erfolgt in konzentrierter Schwefelsäure. Ohne Zusatz von Wasser erhitzt, d. h. geröstet, geht Stärke in wasserlösliche Stoffe („Röstgummi“, technisches Dextrin) über.

[S. 29]

Mit Jod rötlich färbt sich auch die (Florideen-)„Stärke“ der Rotalgen. Diese rundlichen Körner haben ähnlichen Bau wie die Stärkekörner der höheren Pflanzen, scheinen aber außerhalb der Chromatophoren, jedoch in inniger Berührung mit ihnen zu entstehen und sollen chemisch dem Glykogen näher stehen als echter Stärke[35].

IV. Die Zellmembranen[36].
Wie schon erwähnt, ist jeder Protoplast bei den Pflanzen in der Regel von einem festen Gehäuse, der Zellhaut oder Zellmembran, umgeben. Sie ist ein Außenprodukt des Protoplasten, das wir nicht als lebend betrachten. Viele Gewächse beginnen freilich ihre Entwicklung mit nackten Protoplasten, entweder als unbehäutete Schwärmsporen oder Eizellen. Diese Zellen scheiden aber, ehe sie sich zu entwickeln, zu teilen beginnen, an ihrer Oberfläche eine dünne Zellhaut aus. Bei der Vermehrung der Zellen werden, wie wir gesehen haben, gewöhnlich nach der Teilung des Plasmas Scheidewände zwischen die neu gebildeten Zellen eingeschaltet, so daß auch dann alle Protoplasten von Zellhäuten umhüllt bleiben.

Da nacktes Protoplasma meist Kugelform annimmt, so ist es die Zellhaut, die die Gestalt der umhäuteten Zellen bedingt. Die Zellen, die embryonal verhältnismäßig klein und ziemlich einförmig gestaltet sind, wachsen nämlich zu ihren endgültigen Größen und zu ihren besonderen Formen nur durch das Flächenwachstum ihrer Zellmembranen heran. Bald ist dieses Wachstum ringsum überall gleich, bald auf die Spitze oder eine Kante der Zelle oder einen die Zelle rings umlaufenden Gürtel oder anders gestaltete, eng umschriebene Stellen beschränkt. Es kommt entweder zustande durch Dehnung der vorhandenen Membran, oder es erfolgt durch Einlagerung (Intussuszeption) neuer Substanz zwischen die Teilchen der schon vorhandenen Haut.

Fig. 29. A Runde, gestielte Zelle von Saprolegnia mit runden Tüpfeln in der Zellmembran. B Ein Tüpfel derselben, bei stärkerer Vergrößerung im optischen Querschnitt.

Fig. 30. Steinzelle aus der Walnußschale mit Membranschichtung und verzweigten Tüpfelkanälchen. Die unvollständig gezeichneten Tüpfelkanäle verlaufen schräg zur Ebene der Zeichnung. ROTHERT, frei nach REINKE.

Die Zellwand dient auch dem Schutze und ferner vor allem der Festigung des Protoplasten. Diese wird durch Spannung der Membran (Turgor, vgl. S. 191) und durch Dickenwachstum der Zellhaut erreicht. Wie die Zelle durch das Flächenwachstum der Membran ihre endgültige Form erhält, so bekommt die Membran durch das Dickenwachstum ihre endgültige, bezeichnende Struktur. Die Zellmembranen, die zuerst sehr zarte, dünne und strukturlose Häute sind, werden nämlich weiterhin gewöhnlich ringsum überall gleich oder nicht überall gleichmäßig verdickt, und zwar in der Weise, daß sie an einzelnen Stellen verhältnismäßig dünn bleiben, während sie an anderen viel stärker in die Dicke wachsen. In vielen Zellen wird die ganze Zellhaut mit Ausnahme kleiner rundlicher (kreisförmiger, elliptischer) oder spindelförmiger Stellen,[S. 30] Tüpfel, verdickt; so entstehen in verdickten Zellmembranen Grübchen (Fig. 29) oder röhrenförmige Kanäle (Fig. 30), die Tüpfelkanäle, die die Verdickungsschichten durchsetzen, an einem Ende aber, zumeist dem äußeren, durch unverdickte Zellhautteile, die Schließhaut des Tüpfels, abgeschlossen sind (Fig. 29 B). Nicht selten werden in gewissen Zellen mehrere Tüpfelkanäle bei weiter fortschreitender Verdickung der Membranen zu einem einzigen Kanale vereint. Solche verzweigte Tüpfel pflegen sehr eng zu sein und kommen vornehmlich stark verdickten und harten Zellwänden zu, so denen der Steinzellen oder Sklereïden (Fig. 30). In anderen Zellen nimmt dagegen die Zellhaut im allgemeinen nur wenig an Dicke zu, indem die Verdickung nur auf eng umgrenzte Teile beschränkt bleibt, die dadurch die Form von Höckern, Warzen, einfachen oder verzweigten Zäpfchen (Fig. 31), Stacheln (Fig. 32), Leisten, Netzen oder Bändern (Fig. 67, 68) von charakteristischem Bau erhalten. Solche Verdickungen sitzen der Zellhaut bald außen, bald innen auf (zentrifugale, zentripetale Verdickungen). Kleine nach außen vorspringende Höcker kommen z. B. an den meisten Haaren vor; besonders mannigfaltig werden solche Verdickungen ausgebildet auf den Außenflächen von Sporen und Pollenkörnern (Fig. 32) und in vielen wasserleitenden Zellen der höheren Pflanzen (Fig. 67, 68).

Fig. 31. Stück einer schlauchförmigen Zelle (Rhizoid) des Lebermooses Marchantia mit okalen, zapfenförmigen Wandverdickungen. Vergr. 240.
Wandverdickungen können sehr seltsame Form annehmen, wenn sie auf kleine Stellen in einer Zelle beschränkt sind, so ganz besonders bei den Zystolithen, z. B. in den Blättern von Ficus elastica (Fig. 33): zentripetalen Wandverdickungen von der Form traubenförmiger gestielter Körper, in die sehr viel Kalziumkarbonat eingelagert ist.

Das Dickenwachstum, das schon während des Flächenwachstums der Zellhaut zu beginnen pflegt, aber auch nach dessen Beendigung noch fortdauern kann, erfolgt meist durch Substanzanlagerung (Apposition) von dem Protoplasma aus an die bereits vorhandenen dünnen Häute, und zwar in Form neuer Membranlamellen. So entsteht in Zellen, in denen der größte Teil der Zellhaut verdickt wird, gewöhnlich eine schalenförmige Schichtung der Zellmembranen (Fig. 30): in den Verdickungsschichten wechseln meist dickere, dichtere Lamellen mit dünneren, weniger dichten, wasserreicheren und oft auch chemisch von den dichteren verschiedenen Lamellen ab. Die dichteren brechen das Licht stärker als die dünneren, erscheinen infolgedessen heller und leuchtender. Auch viele scheinbar homogene Zellhäute lassen nach Quellung mit starken Säuren oder Alkalien solche Schichtung deutlich erkennen.

Fig. 32. A Pollenkorn des Kürbis in Flächenansicht und zum Teil auch im optischen Durchschnitt. Das Präparat war mit Zitronenöl durchsichtig gemacht worden. Vergr. 240. B Teil eines Querschnittes durch die Pollenhaut von Cucurbita verrucosa. Vergr. 540. Nach STRASBURGER.

Fig. 33. Zystolithenzelle von Ficus elastica. c Zystolith. Vergr. 240.

[S. 31]

Nicht selten beruht das Dickenwachstum aber auch auf Substanzeinlagerung (also Intussuszeption).

Besonders zentrifugale Wandverdickungen kommen oft durch Intussuszeptionswachstum zustande. Solches kann auch fern vom Protoplasma stattfinden und mit chemischen und strukturellen Differenzierungen der Zellhäute verbunden sein, so daß solche Membranen fast wie lebende Gebilde erscheinen. An Zellen aber, die durch freie Zellbildung entstanden sind, wie z. B. bei den Askosporen, werden die zentrifugalen Wandverdickungen von dem Periplasma ausgebildet, aus dem die Zellen herausgeschnitten worden sind (vgl. S. 22). Ebenso werden die zentrifugalen Verdickungen bei Pollenkörnern und vielen Sporen von außen her durch die Tätigkeit von Tapetenzellplasma aufgelagert, das die Behälter der Sporen oder Pollenkörner innen auskleidet. Nach Auflösung der Tapete verschmelzen nämlich ihre Protoplasten zu einem Periplasmodium, das die Sporen- oder Pollenanlagen allseitig umgibt[37].

In manchen Fällen sieht man in den Verdickungsschichten einer Membran bei Betrachtung von der Fläche feine Streifen (Fig. 34), die schräg zur Längsachse der Zelle verlaufen. Diese Streifung beruht entweder auf einer Sonderung jeder Verdickungslamelle in abwechselnd verschieden dichte Streifen, wovon die dichteren oft in das Zellinnere vorspringen, oder, bei vielen Algen (z. B. Cladophora), auf einer wellblechartigen Fältelung der einzelnen Lamellen. Ist die Wandung deutlich geschichtet, so sind die Streifen in den aufeinander folgenden Verdickungslamellen meist entgegengesetzt geneigt (Fig. 34).

Chemie der Zellmembranen[38]. Trotz diesen Wachstumsvorgängen ist die Zellmembran von Anfang an kein lebender Teil des Protoplasten, sondern ein Ausscheidungsprodukt von ihm, das sich im Laufe der Zeit noch in verschiedener Weise, auch chemisch, verändern kann. In lebenden Zellen ist sie stets von Wasser durchtränkt und gequollen, schrumpft infolgedessen bei Wasserentziehung mehr oder weniger zusammen. Ihre Lamellen bestehen aus Kohlehydraten, vor allem aus Zellulosen, doch teilweise auch aus Hemizellulosen und Pentosanen, meist aus mehreren dieser Verbindungen zugleich. In keinem Falle also sind die pflanzlichen Membranen nur aus reinen Zellulosen aufgebaut, auch nicht, wenn man kurz von Zellulosemembranen spricht. Die Zellulosen kommen in den Membranen aller Pflanzen vor, mit Ausnahme der meisten Pilze; es sind Polysaccharide von der Zusammensetzung (C6H10O5)n, die sich in Jodlösung nicht, mit Chlorzinkjodlösung aber intensiv blau färben. Die gleiche Reaktion gilt übrigens für viele Hemizellulosen, die ebenfalls Polysaccharide sind. Die Zellhäute enthalten fast stets in größeren Mengen auch noch andere Substanzen, z. B. auch solche, die sich mit Chlorzinkjod nicht bläuen, sondern anders färben. Unter ihnen sind die Pektinstoffe besonders wichtig, die mit diesem Reagens gelbbraune Färbung annehmen. Darauf beruht es, daß viele „Zellulosemembranen“ sich mit Chlorzinkjod nicht rein blau, sondern violett, braunviolett oder braun färben. In den Membranen der meisten Pilze und Bakterien ist Chitin vorhanden, das früher als spezifisch tierischer Membranstoff galt; es soll bei den Pilzen die Zellulose vertreten[39].

Fig. 34. Teil einer Sklerenchymfaser von Vinca major bei oberer Einstellung. Auch die inneren Grenzen der Wand wurden bei tieferer Einstellung in das Bild eingetragen. Vergr. 500. Nach STRASBURGER.
Die Zellulosen sind unlöslich in verdünnten Säuren, in Alkalien, selbst konzentrierter Kalilauge. Dagegen sind sie unter schwacher Hydrolyse löslich in Kupferoxydammoniak und, unter Umwandlung in Dextrose, in konzentrierter Schwefelsäure oder[S. 32] sehr stark konzentrierter Salzsäure. Ferner werden sie durch ein besonderes Enzym, die Zellulase, das die Pflanze bildet, und zwar in diesem Falle über das Disaccharid Zellobiose in Dextrose übergeführt. Nach vorausgegangener Behandlung mit Schwefelsäure oder Phosphorsäure werden sie durch wäßrige Jodlösung blau gefärbt, ebenso bei gleichzeitiger Einwirkung der konzentrierten Lösungen bestimmter Salze, wie Chlorzink oder Chloraluminium, mit Jod. Daher ist das gebräuchlichste Reagens, um Blau- oder Violettfärbung der Zellulosen zu erzielen, eben Chlorzinkjodlösung. Eine Reihe von Stoffen, die den Zellulosen nahe stehen, aber schon durch verdünnte Säuren in lösliche, von der Dextrose verschiedene Zuckerarten (z. B. Mannose, Galaktose) umgewandelt werden, faßt man als Hemizellulosen zusammen. Besonders reich daran sind die Pflanzenschleime und die Reservezellulosen (vgl. S. 36). Einige von ihnen sind in Kupferoxydammoniak unlöslich. So wie die Zellulosen hochmolekulare Polysaccharide von Hexosen (C6H12O6) sind, so sind die Pentosane (C5H8O4)n entsprechende hochmolekulare Kondensationsprodukte von Pentosen (C5H10O5), z. B. von Arabinose, Xylose. Die Pektine sind durch die Leichtigkeit ausgezeichnet, womit sie sich, nach vorhergegangener Behandlung mit verdünnten Säuren, in Alkalien lösen. Sie färben sich im Gegensatz zur Zellulose mit Safranin und Methylenblau intensiv. Die Pektine sind verwickelt gebaute Verbindungen, worin an Tetragalakturonsäure (C24H34O25, einem Kondensationsprodukt der Galakturonsäure C6H10O7) Monohexosen, Pentosane, ferner esterartig Methylalkohol und salzartig Kalzium und Magnesium gebunden sind[40]. Anwesenheit von Pektinen bedingt die Gelatinierung von Fruchtdekokten (also die Bildung von Fruchtgelees).

Das Chitin ist ein stickstoffhaltiges Polysaccharid (C30H50O19N4), das Azetylessigsäure in säureamidartiger Bindung enthält.

Die Zellhäute erfahren im Laufe des Lebens einer Zelle oft mannigfache chemische Umwandlungen dadurch, daß die bereits ausgebildeten Schichten ihre Beschaffenheit ändern oder die neuen Verdickungsschichten in ihrer Zusammensetzung von den vorhandenen abweichen. Diese Umwandlungen stehen oft in engster Beziehung zu den Anforderungen, die an die Zellen gestellt werden. Was zunächst die „Zellulose“membranen betrifft, so sind sie, ganz jung, wenig elastisch, dagegen, wie es mit Rücksicht auf das bevorstehende starke Längenwachstum günstig erscheint, verhältnismäßig stark dehnbar; später pflegt sich das umzukehren. Sie setzen der Diffusion von Wasser und gelösten Substanzen kaum Widerstand entgegen.

Nicht selten verschleimen Zellulosemembranen durch Umwandlung ihrer Substanz in gallertige oder schleimartige, in Wasser stark quellende Massen. Besonders oft tritt aber Verholzung, Verkorkung und Kutinisierung der Zellmembranen ein. Verholzung der Membranen verringert die Dehnbarkeit der Zellen ganz bedeutend, erhöht also die Starrheit, ohne die Durchlässigkeit für Wasser und darin gelöste Stoffe aufzuheben. Verkorkte und kutinisierte Membranen aber sind verhältnismäßig undurchlässig für Wasser und Gase und setzen die Verdunstung stark herab. Häufig werden auch die Zellhäute nachträglich durch Derivate von Gerbstoffen sehr dunkel gefärbt und gegen Fäulnis geschützt, so in Samenschalen und in älterem Holz. In jede ältere Membran sind ferner anorganische Stoffe unter Umständen in bedeutender Menge eingelagert, sehr häufig Kieselsäure, seltener Kalziumkarbonat, ferner organische Salze, z. B. besonders häufig Kalziumoxalat.

Die Verholzung beruht auf der Einlagerung von Ligninen in die Kohlehydratlamellen. Die chemische Zusammensetzung der Lignine ist aber noch wenig geklärt. Wahrscheinlich sind Benzolderivate an ihrer Zusammensetzung beteiligt. In den Zellen, deren Membranen verholzt sind, bestehen aber die innersten Membranschichten in vielen Fällen aus Zellulose. Als besonders charakteristische Reaktionen verholzter Zellwände gelten: Gelbfärbung mit schwefelsaurem Anilin, Rotfärbung mit Phloroglucin und Salzsäure. Diese Reaktionen werden wohl durch aromatische Stoffe bewirkt, die in den verholzten Membranen vorkommen. Mit Chlorzinkjodlösung färben sich verholzte Membranen gelb, nicht blau. Der Holzstoff läßt sich technisch aus den verholzten Membranen durch längeres[S. 33] Kochen mit Kalziumbisulfit- oder Natronlauge unter Druck herauslösen (in mikroskopischen Schnitten auch durch Eau de Javelle), so daß nur die Kohlehydratlamellen zurückbleiben. In dieser Weise stellt man aus Holz „Zellulosezellstoff“ her.

Die Verkorkung beschränkt sich in der Regel auf die mittleren Verdickungsschichten einer Membran. Die verkorkten Lamellen bestehen nur aus Suberinen, enthalten also keine Kohlehydrate; sie werden den unverkorkten Membranlamellen angelagert. Mit der Verkorkung nicht völlig übereinstimmend, wenn ihr auch nahe verwandt, ist die Kutinisierung. Sie besteht in einer nachträglichen Auflagerung von Kutinen auf Zellulosemembranen oder einer Einlagerung in solche. Zwischen Kutinen und Suberinen bestehen keine scharfen Unterschiede. Beide nehmen mit Chlorzinkjodlösung gelbbraune, mit Kalilauge annähernd gleiche gelbe Färbung an, färben sich mit Sudanglyzerin rot, und beide werden durch konzentrierte Schwefelsäure oder Kupferoxydammoniak nicht gelöst. Doch widerstehen die Kutine besser der Kalilauge. Die Kutine und die Suberine verhalten sich übrigens je nach ihrer Abstammung gegen Reagenzien etwas verschieden. Die Suberine sollen nach VAN WISSELINGH[41] fettartige Körper sein aus Glyzerinestern und anderen zusammengesetzten Estern der Phellon-, Suberinsäure und anderen höheren Fettsäuren; den Kutinen soll dagegen die Phellonsäure, die in den Suberinen stets vorhanden ist, immer fehlen.

Kalziumkarbonat kommt bei manchen Pflanzen, wie den meisten Characeen unserer Seen und Teiche, so massenhaft in den Membranen vor, daß diese starr und brüchig werden. Kieselsäure ist in den peripherischen, dadurch sehr harten Zellwänden der Gräser, Schachtelhalme und vieler anderer Pflanzen, z. B. der einzelligen Diatomeen, vorhanden. Das Kalziumoxalat ist meist in Kristallen ausgeschieden.

Auch die zur Flavongruppe gehörenden Farbstoffe der technisch benutzten Farbhölzer haben ihren Sitz in den Membranen.

Feste Zellmembranen können nachträglich in Gummi umgewandelt werden, so bei der Gummosis in einem Holzkörper. Bei Prunus- oder Citrus-Arten spielt sich dieser Vorgang so ab, daß nacheinander die einzelnen Verdickungsschichten der Zellwände zu Gummi verquellen. Schließlich wird auch der Zellinhalt zu einem Bestandteil der Gummimasse[42]. Der Gummi ist chemisch den Pflanzenschleimen sehr ähnlich (vgl. S. 32).

Röntgenspektroskopische Untersuchungen der letzten Zeit machen es wahrscheinlich, daß die Zellulosemembranen wie die Stärke kristallinische Struktur haben. Sie bestehen aus Kristalliten, die mit einer ihrer Hauptachsen parallel zur Längsachse der Zelle angeordnet sind[43].

Zweiter Abschnitt. Gewebelehre (Histologie)[44].
I. Die Gewebebildung.
A. Begriffsbestimmung und Bedeutung des Zellgewebes. Jeder innigere Verband umhäuteter Protoplasten wird als Zellgewebe bezeichnet.

Nur die niedersten Organismen bestehen aus einem ein- oder mehrkernigen Protoplasten; sie sind zeitlebens einzellig. Meist ist aber der Körper einer Pflanze vielzellig, d. h. er setzt sich aus vielen, voneinander durch Zellwände getrennten Protoplasten, also aus Zellgewebe, zusammen. Höhere äußere Organisation und größeres Körpervolumen sind nämlich bei den weitaus meisten Pflanzen an die Ausbildung vieler umhäuteter Protoplasten gebunden. Freilich gibt es, wie wir schon sahen, auch äußerlich hochorganisierte Algen (die Schlauchalgen), bei denen eine solche Kammerung nicht vorkommt, sondern das Innere von einem vielkernigen Protoplasten eingenommen wird. Man kann sie als nicht zellige Organismen den zellulären gegenüberstellen. Solche Organismen gibt es aber nur wenige. Ausbildung von Zellgewebe war eben für die Entwicklung höher organisierter Pflanzenformen offenbar von größter Bedeutung. Sie ermöglichte es, eine Arbeitsteilung im Protoplasma[S. 34] des Körpers durchzuführen. Durch die Zerteilung des Protoplasmas in viele Protoplasten entstanden ebensoviele einzelne Elementarteile, die verschiedene Aufgaben übernehmen konnten, und vergrößerte sich außerdem die Plasmaoberfläche ganz erheblich. Durch die Ausbildung der trennenden Zellwände wurde es ferner möglich, diese Elementarteile mehr oder weniger gegeneinander zu isolieren, zugleich den Zusammenhalt und die innere Aussteifung des ganzen, aus vielen weichen Protoplasten bestehenden Körpers zu erhöhen.

Ein, freilich sehr unvollkommenes, lockeres Gewebe bildet sich schon bei solchen Organismen, deren Zellen nach jeder Teilung sich voneinander trennen, aber durch eine Gallerte aus ihren verquellenden Zellhäuten zusammengehalten werden. Man nennt derartige Verbände mehr oder weniger selbständiger Zellen gemeinsamen Ursprungs Zellfamilien oder Zellkolonien. Mannigfaltige Beispiele dafür bieten uns die Spaltalgen (Fig. 35) und die Ordnungen der Volvocales und der Protococcales unter den Grünalgen (vgl. diese). In den Zellfäden und Zellflächen niederer Algen, deren Zellen bereits fest verbunden sind, beginnen allmählich die Merkmale geschlossener Gewebe hervorzutreten. Diese Merkmale werden mit wachsender Zellenzahl im Organismus und mit der fortschreitenden Arbeitsteilung zwischen den Zellen immer deutlicher.

Fig. 35. Gloeocapsa polydermatica. A Beginn einer Teilung. B Links: kurz nach der Teilung. C Im Ruhezustande. Vergr. 540. Nach STRASBURGER.

Fig. 36. Längsschnitt durch das Mutterkorn Vergr. 300. Nach SCHENCK.

Fig. 37. Längsdurchschnitt durch den Stiel des Fruchtkörpers des Steinpilzes. Vergr. 300. Nach SCHENCK.

B. Ursprung der Gewebe. Die Entstehung pflanzlicher Gewebe ist im allgemeinen auf Zellteilungen zurückzuführen. Bei manchen niederen Algen, z. B. bei Hydrodictyon, werden aber Gewebe durch Anlagerung freier Zellen aneinander und durch Verwachsung ihrer Zellmembranen, bei den Pilzen und Schlauchalgen (Siphoneen) durch Verflechtung schlauchförmiger Zellen oder Zellfäden gebildet (Flechtgewebe oder Plectenchym, Fig. 37). Kommt es dabei zu einer innigen Verwachsung der verflochtenen Zellen und ist dieses Geflecht besonders dicht, so macht es in dünnen Schnitten einen ganz ähnlichen Eindruck wie ein Gewebe der höher organisierten Pflanzen (Fig. 36); bei nachträglicher Verdickung der Wände können sogar die Tüpfel in den nachträglich miteinander verwachsenen Zellhäuten aufeinander treffen.

C. Die Zellmembranen im Zellgewebe. Betrachtet man Schnitte durch pflanzliches Zellgewebe bei schwächeren Vergrößerungen, so sind es meist ausschließlich oder vor allem die Zellmembranen, die ins Auge fallen; sie scheinen bei weniger genauem Zusehen ein Netzwerk von Fäden, ähnlich einem Stoffgewebe, zu bilden, woraus sich der Name Zellgewebe erklärt.

1. Schichtung. Alle Scheidewände, die bei den Zellteilungen im Zellgewebe auftreten, sind, wie auch sonst bei Zellteilungen, zunächst einfache und sehr dünne, meist plattenförmige Membranlamellen, die den benachbarten Zellen gemeinsam zukommen. In diesem Zustande bleibt die Zellmembran[S. 35] aber nie. Sie wird schon in den embryonalen Zellen verdickt, während die Zellen durch Flächenwachstum der Membranen sich vergrößern. Die Verdickung erreicht aber ihr Ende erst, nachdem die Zellen längst zu ihren endgültigen Größen herangewachsen sind. Sie fällt verschieden aus, je nach den Funktionen, die die ausgebildeten Dauerzellen übernehmen: besonders dicke Zellmembranen findet man bei Zellen, die der mechanischen Festigung dienen (Fig. 38). In der Regel wird die Verdickung einer Scheidewand von beiden angrenzenden Protoplasten aus, und zwar meist durch beiderseitige Anlagerung einer gleichen oder ungleichen Zahl neuer schalenförmiger Membranlamellen an die dünne Scheidewand besorgt (Fig. 38, 40, 62). So bekommt eine jede Zelle nachträglich ihre eigenen Membranschichten. Die den benachbarten Zellen gemeinsame mittlere Membranlamelle einer Zellhaut bezeichnet man alsdann als Mittellamelle (Fig. 38 m). Sie ist meist sehr dünn, nur an den Zellecken und Kanten etwas dicker (Zwickel, Fig. 71 C m*) und besteht hauptsächlich aus kalziumhaltigen Pektinstoffen, die verhältnismäßig leicht löslich sind; in verholzten und verkorkten Geweben ist sie außerdem oft verholzt.

In weichen Geweben lassen sich die Zellen schon durch Kochen in Wasser voneinander trennen, das die Mittellamellen zum Verquellen bringt, z. B. bei vielen Kartoffelknollen. In vielen reifen Früchten tritt eine solche Isolierung von selbst ein. Durch das SCHULZEsche Mazerationsgemisch (chlorsaures Kali und Salpetersäure) oder durch heiße konzentrierte Ammoniaklösung gelingt es, auch andere Zellen durch Auflösung der Mittellamellen voneinander zu lösen, durch das Mazerationsgemisch z. B. die des Holzes. Auch gibt es pektinvergärende Bakterien, die mittels des Enzyms Pektinase die Mittellamellen zerstören und gewisse Zellen, z. B. bei der Flachsrotte die mechanischen Zellen der Flachsstengel von den anderen Zellen, trennen.

Die Verdickungsschichten unterscheiden sich meist optisch und chemisch von der Mittellamelle; da sie sich in der Regel zu beiden Seiten der Mittellamelle gleichmäßig anlagern, so erhält die Scheidewand zwischen zwei Zellen mehr oder weniger symmetrischen Bau (Fig. 38–40, 41, 62), der sich selbst auf die Tüpfel erstreckt. Nicht selten ist in stärker verdickten Zellhäuten, besonders den Zellen des Holzes, beiderseits der Mittellamelle eine Sonderung in drei, ihrem optischen und chemischen Verhalten nach verschiedene Schichten zu erkennen, die sich als primäre, sekundäre und tertiäre Verdickungsschichten unterscheiden lassen und selbst wieder aus vielen Lamellen bestehen können. Am stärksten pflegt alsdann die sekundäre Verdickungsschicht entwickelt zu sein; sie bildet die Hauptmasse der Wandung. Die innerste Verdickungsschicht einer Zellhaut ist meist stärker lichtbrechend; sie wird als Grenzhäutchen oder Innenschicht bezeichnet (Fig. 71 Ci) und besteht meist aus Zellulose.

Zellwände, die nicht an andere Zellen grenzen (Fig. 40, 44), vor allem also die Außenwände an der Peripherie des Pflanzenkörpers, sind dagegen asymmetrisch gebaut. Bei solchen Wänden können ja nur einseitig nach dem Zellinnern hin Verdickungslamellen an die zunächst allein vorhandene dünne Zellhaut angelagert werden.

Fig. 38. Stark verdickte Zellen aus dem Marke eines älteren Stammstückes der Waldrebe Clematis vitalba. m Mittellamelle, i Interzellularraum, t Tüpfelkanäle in Seitenansicht. In der einen Zelle ist die untere Wand w mit den Tüpfeln in Aufsicht zu sehen. Vergr. 300. Nach SCHENCK.
[S. 36]

2. Tüpfelung. Die Zellmembranen, die die Protoplasten voneinander trennen, erschweren begreiflicherweise den Stoffaustausch zwischen den Zellen, und zwar um so mehr, je dicker sie sind. Ohne regen Stofftransport von Zelle zu Zelle kann aber das Leben des ganzen Organismus nicht bestehen. So muß also dafür gesorgt werden, daß die Verdickung der Membranen, die der Festigung dient, die Stoffbewegung nicht allzusehr hemmt. Diesem Bedürfnis wird meist durch Ausbildung von Tüpfeln in den Scheidewänden zwischen den Protoplasten Rechnung getragen. In den freien Wänden findet man dagegen in der Regel keine Tüpfel.

Diese Tüpfel, die in stärker verdickten Zellmembranen Kanäle mit kreisrundem (Fig. 38 bei w und 39 bei m), elliptischem oder spaltenförmigem Querschnitte sind, treffen in den benachbarten Zellen aufeinander; sie sind also beiden Zellen gemeinsam, werden aber in der Mitte von der unverdickten Zellhaut, ihrer Schließhaut, durchsetzt (Fig. 38 t, 39 p, 40 t). Spaltenförmige Tüpfel pflegen schräg gerichtet zu sein und in den Verdickungsschichten benachbarter Zellen einander zu kreuzen.

Der Bau der Tüpfel läßt sich besonders leicht untersuchen an den stark verdickten und reichlich getüpfelten Zellwänden der Samen verschiedener Palmen, zahlreicher Liliaceen, z. B. von Ornithogalum (Fig. 39), und anderer Monokotylen. Die Verdickungsschichten bestehen hier aus einer Hemizellulose, die ein Reservestoff des Samens ist und bei der Keimung durch ein Enzym (Zytase) aufgelöst wird. Sie sind glänzend weiß und können so hart werden, daß solche Samen, z. B. die der Palme Phytelephas macrocarpa, technisch als „vegetabilisches Elfenbein“ zur Anfertigung von Knöpfen u. dergl. verwertet werden.

Fig. 39. Zellen aus dem Samen (Endosperm) der Liliacee Ornithogalum umbellatum. m Tüpfel von oben, p Tüpfelkanal in Seitenansicht mit der Schließhaut. n Zellkern. Vergr. 240. Nach STRASBURGER.

Fig. 40. Zellen aus der Wurzelrinde von Iris florentina. t Tüpfel in den geschichteten Zellmembranen, i Interzellularen. Vergr. gegen 400.

3. Verbindung der Protoplasten im Gewebe. Ein harmonisches Zusammenarbeiten aller lebenden Teile des Körpers, wie es in den Lebensäußerungen des gesamten Organismus so auffällig zutage tritt, wäre freilich wohl kaum möglich, wenn die lebenden Protoplasten im Zellgewebe des Körpers durch die Zellwände völlig getrennt nebeneinander liegen würden. Tatsächlich sind sie nicht ganz gegeneinander abgeschlossen, sondern durch zahlreiche, äußerst feine Protoplasmafäden verbunden, die von ihren Hautschichten ausgehen und die Zellhäute durchsetzen. Meist sind diese Plasmaverbindungen oder Plasmodesmen[45], die sämtliche lebende Zellen des Körpers verbinden, auf die Schließhäute der Tüpfel beschränkt (Fig. 41 s); doch können sie auch die Zellhäute außerhalb der Tüpfel durchsetzen (Fig. 42 pl). Sie erheben die Protoplasten des ganzen Pflanzenkörpers trotz der Ausbildung der Zellwände zu einer organischen, lebenden Einheit und dienen wohl ebenfalls zur Stoff- und außerdem zur Reizleitung von Protoplast zu Protoplast.

[S. 37]

4. Zellfusionen. Die Lebenstätigkeit des vielzelligen Organismus macht es aber auch nötig, Stoffe noch schneller, als es selbst durch weite Tüpfelkanäle möglich ist, innerhalb seines Körpers von einem Organ in ein anderes, etwa aus den Wurzeln in die Blätter, zu schaffen. Die Diffusion von Stoffen durch die Zellmembranen oder die Stoffbewegung in den äußerst feinen Plasmodesmen genügt dazu vielfach nicht, wenn sie auch durch die Ausbildung der Tüpfelkanäle sehr erleichtert wird, die ja in den Scheidewänden zwischen benachbarten Zellen stets korrespondieren. Dementsprechend verschmelzen viele, besonders dem Stofftransporte dienende, außerdem aber auch manche andere Zellen, nachträglich durch breite offene Löcher zu zusammenhängenden Röhren (vgl. S. 54, 55 u. 59), zu Zellfusionen miteinander. Solche Löcher in Ein- oder Mehrzahl entstehen alsdann durch entsprechende Auflösung der Wandsubstanz in den Zwischenwänden, namentlich in den Endwänden benachbarter Zellen.

Fig. 41. Eine Zelle aus der Rinde der Mistel (Viscum album) nach entsprechender Härtung und Färbung der Protoplasten und Quellung der Wände (m). Die Schließhäute (s) der Tüpfel von Plasmodesmen durchsetzt, ch Chloroplasten, n Zellkern. Vergr. 1000. Nach STRASBURGER.

Fig. 42. A Ein etwas gequollenes Wandstück aus dem Endosperm der Elfenbeinpalme (Phytelephas macrocarpa). Bei s und s die aufeinander treffenden, mit Plasma gefüllten Tüpfelkanäle der beiden angrenzenden Zellen, in der Schließhaut zarte Plasmodesmen, außerdem die ganze Dicke der Zellwand durchsetzende Plasmodesmen pl. Vergr. 375. B Die Tüpfelkanäle und die Plasmodesmen der Schließhaut 1500mal vergrößert. C Tüpfelkanal und Schließhaut von der Fläche gesehen, bei 1500facher Vergrößerung. Der kleinere Kreis ist der Tüpfelkanal, der größere die Schließhaut, die dunkleren Punkte darin sind die Plasmodesmen. Nach STRASBURGER.

5. Bildung von Interzellularen und Durchlüftung der Gewebe. Fast immer, wenn sich embryonale Zellen in Dauerzellen umwandeln, werden die Mittellamellen nach Ausbildung von Verdickungsschichten lokal, namentlich an den Ecken und Kanten der Zellen, gespalten, so daß hier die Wände benachbarter Zellen auseinander weichen können. So entstehen im Zellgewebe schon sehr frühzeitig, bis in die äußersten Stengel- und Wurzelspitzen hinein, lufterfüllte Zwischenzellräume (Interzellularen, Fig. 38 i, 40 i). Meist haben sie im Querschnitt die Form kleiner Drei- oder Vierecke, die der erwähnten Spaltung der Zellwand ihre Entstehung verdanken und daher schizogen genannt werden. Die Interzellularen bilden ein zusammenhängendes System (Interzellularsystem) reich verästelter feiner Kanäle, die den Zellkanten entlang streichen und das Gewebe allseitig durchziehen. Bei bevorzugtem Wachstum bestimmter Zellwandstellen können derartige schizogene Interzellularen benachbarte Zellen nachträglich völlig voneinander trennen und zu größeren Kammern oder Gängen von mehr oder weniger regelmäßiger[S. 38] Gestalt erweitert werden. Auch durch Zerstörung von Zellen kann die Bildung von Zwischenräumen veranlaßt werden; solche auf Zerreißung von Zellen zurückzuführende Interzellularräume heißen rhexigen, durch Auflösung von Zellwänden entstehende lysigen. In manchen Fällen werden schizogene Interzellularen weiterhin rhexigen oder lysigen vergrößert. Ungleich verteiltes Wachstum führt oft zu einer Dehnung und Zerreißung ganzer Gewebegruppen. Auf diese Weise entstehen z. B. die hohlen Stengel. In Geweben, die sich durch Verflechtung von Zellfäden gebildet haben, sind die Zwischenzellräume von vornherein vorhanden (Fig. 37).

Die Interzellularen enthalten gewöhnlich Luft und sind für die lebenden Gewebezellen von größter Bedeutung. Eine Zelle, die allseits von Wasser oder Luft umspült ist, findet jederzeit in ihrer Umgebung leicht die Gase, die sie zum Leben braucht. Die zahllosen Protoplasten in den Geweben der vielzelligen Pflanzen würden aber nicht lebensfähig sein, wenn nicht dafür gesorgt wäre, daß auch zu ihnen solche Gase gelangen können. Diese Aufgabe, die Gase im Innern der Gewebe zirkulieren zu lassen, erfüllen die Interzellularräume.

II. Zellarten, Gewebearten und Gewebesysteme.
Nur bei den niederen mehrzelligen Pflanzen besteht das Zellgewebe des Körpers aus lauter ziemlich gleichartigen kugelförmigen, polyëdrischen oder zylindrischen Zellen (vgl. z. B. Fig. 84), die sämtlich in fast gleicher Weise allen Lebensfunktionen dienen. Man kann diese Gewebe Parenchym nennen. In dem Maße, wie mit fortschreitender äußerer Organisation und mit Zunahme der Größe des Organismus die Arbeitsteilung zwischen den Protoplasten zunimmt, erhalten Zellen einzeln oder gruppenweise verschiedene Form, verschiedenen Bau und besondere Aufgaben. So entsteht namentlich bei den höheren Pflanzen eine Sonderung der gleichartigen Zellen in eine Anzahl verschieden gebauter Zellarten, zwischen denen es aber immer Übergänge gibt. Untersucht man vergleichend die verschiedensten Organe einer Pflanze und aller höher organisierten Pflanzen miteinander, so findet man, daß die Zahl dieser verschiedenen Zellarten klein ist und daß bestimmte Zellformen überall wiederkehren.

Meist sind gleichartige Zellen zu Gruppen verbunden. Einen solchen Verband aus lauter gleichartigen Zellen nennt man eine Gewebeart. Die Gewebearten unterscheiden sich durch die Formen, den Inhalt und den Membranbau der Zellelemente, aus denen sie bestehen; eine jede Gewebeart hat ihre besonderen Aufgaben, die in einer Hauptfunktion oder in mehreren Funktionen bestehen können. Je höher die Pflanze organisiert ist, um so mehr Gewebearten setzen ihren Körper zusammen. Doch ist entsprechend den Zellarten auch die Zahl der Gewebearten klein, da sie in gleicher Weise bei den verschiedensten Gewächsen immer wieder auftreten. Nicht selten kommt es vor, daß in ein Gewebe aus sonst gleichartigen Zellen einzelne Zellen (wohl auch Idioblasten genannt) oder Zellgruppen mit ganz abweichendem Bau und Inhalt eingeschaltet sind, die also einer anderen Zellart angehören.

Bei den höheren Pflanzen bilden ferner einzelne Gewebearten größere Gewebemassen, die auf weite Strecken oder durch den ganzen Pflanzenkörper in ununterbrochenem Zusammenhange stehen. Man nennt solche Verbände, die oft auch aus verschiedenartigen Gewebearten zusammengesetzt sind, morphologische Gewebesysteme. Auch derartige zusammengesetzte Gewebeverbände können durch ihre Baueigentümlichkeiten sehr auffallen und bestimmte Hauptfunktionen haben; und[S. 39] zwar pflegen die verschiedenen Gewebearten einander in ihren Funktionen zu ergänzen oder zu unterstützen.

Zu einem physiologischen Gewebesysteme endlich faßt man alle Zellen zusammen, die in ihren Hauptfunktionen übereinstimmen, gleichgültig ob und wie sie morphologisch verbunden und woraus sie ontogenetisch entstanden sind. Solche Systeme sind also etwas ganz anderes als die morphologischen Gewebesysteme.

Wir können sämtliche Gewebearten der höher organisierten Pflanzen in zwei Hauptgruppen teilen, nämlich 1. in die embryonalen oder Bildungsgewebe und 2. in die fertigen oder Dauergewebe.

A. Die Bildungsgewebe.
Sie werden auch Meristeme genannt. Sie bestehen aus verhältnismäßig kleinen, nach allen Richtungen ungefähr gleich großen, also isodiametrischen, würfelförmigen oder aus prismatischen, plattenförmigen oder langgestreckten, embryonalen Zellen mit dünnen Zellmembranen, reichlichem Plasma, großen Zellkernen und wenigen kleinen Vakuolen (vgl. Fig. 2). Bezeichnend für sie sind meist die zahlreichen Zellteilungen, die man in ihnen, wenigstens so lange sie tätig sind, findet. Diese Bildungsgewebe, aus denen die Dauergewebe hervorgehen, zerfallen nach den Orten ihres Vorkommens und der Art ihrer Entstehung in Urmeristeme und sekundäre Meristeme.

1. Urmeristeme. Sie entstehen durch die Teilung der Keimzelle und setzen zunächst den Embryo allein zusammen. Später sind sie hauptsächlich an den Spitzen der Zweige und Wurzeln, an den Vegetationspunkten dieser Organe (Fig. 102, 154) vorhanden. Hier findet alsdann die Vermehrung der embryonalen Zellen und die Anlage vieler Seitenorgane statt (apikales oder Spitzenwachstum).

Eine oder einige dieser Meristemzellen an der äußersten Spitze des Vegetationspunktes bleiben dauernd embryonal und vermehren durch Wachstum und darauffolgende Zellteilungen fortgesetzt die Zellen des Meristems, während die embryonalen Zellen, die durch diese Teilungen entstanden sind, sich meist nach weiteren Teilungen allmählich in Dauerzellen umwandeln. Ist eine solche Spitzenzelle vorhanden (Fig. 100, 101, 153), die alsdann meist durch Form und besondere Größe von den übrigen Meristemzellen abweicht, so spricht man von einer Scheitelzelle, sind mehrere in einer oder mehreren Schichten (Fig. 102, 154) vorhanden, von Initialzellen. Diese sind meist von den übrigen Meristemzellen der Form nach nicht zu unterscheiden; bei manchen Pflanzen ähneln sie jedoch mehr oder weniger den Scheitelzellen.

Dicht hinter dem Vegetationspunkte beginnen die annähernd gleichartigen, lückenlos verbundenen Urmeristemzellen verschieden zu wachsen und sich in Stränge und Schichten verschiedenartig gestalteter Bildungszellen zu sondern, die aber sonst zunächst die Eigenschaften der embryonalen Zellen noch behalten (Fig. 100, 102, 154). Schon hier treten Interzellularen auf. Erst in größerer Entfernung vom Vegetationspunkte bilden sich allmählich die Merkmale der verschiedenen Dauergewebe aus, basalwärts fortschreitend in immer stärkerem Maße, bis der fertige Zustand schließlich erreicht ist. Bei dieser Gewebedifferenzierung kommt es sehr häufig vor, daß Gruppen, Stränge oder Schichten von Zellen ihre meristematische Beschaffenheit beibehalten und zu Ausgangspunkten für weitere Neubildungen von embryonalen und fertigen Geweben werden. In vielen Fällen stellen sie vorübergehend eine Zeitlang ihre Teilungstätigkeit ein.

Bei vielen Monokotylen bleiben die basalen Abschnitte der Stengelglieder lange Zeit meristematisch und dienen außer dem Meristem der Vegetationspunkte als Bildungsherde für Dauergewebe, aber nicht wie dieses[S. 40] Meristem auch zur Bildung von Seitenorganen. Dadurch kommt das interkalare Wachstum dieser Sprosse und vieler anderer Pflanzenteile zustande.

2. Sekundäre Meristeme sind Meristeme, die aus untätig gewordenen Resten von Urmeristemen durch neue Teilungen ihrer Zellen oder als Neubildungen aus Dauerzellen entstehen, letzteres dadurch, daß diese Dauerzellen einen Funktionswechsel durchmachen und durch neue Zellteilungen sich in embryonale Zellen zurückverwandeln (Folgemeristeme). Ihre Elemente gleichen denen der Urmeristeme, haben aber in der Regel die Gestalt langgestreckter oder plattenförmiger Prismen (Fig. 167). Solche sekundären Meristeme geben den Anlaß zur Korkbildung und zum sekundären Dickenwachstum der Baumstämme und heißen Kambien. Diese Kambien sind mehr oder weniger dünne Meristemschichten (Fig. 165, 166), die als mantelförmige Hohlzylinder parallel zur Organoberfläche im übrigen Gewebe verlaufen. In den Kambien pflegt eine mittlere Schicht von Meristemzellen, die Initialzellen, durch fortgesetzte tangentiale, also gleichgerichtete Teilungen nach außen oder innen oder nach beiden Seiten in radialer Richtung Tochterzellen (Gewebemutterzellen) abzugeben, die sich ihrerseits, manchmal erst nach weiteren Teilungen, zu Dauerzellen umbilden.

Die in Meristemen bei den Zellteilungen entstehenden neuen Zellwände sind sehr häufig ebenflächig und werden in der Regel, doch nicht immer, senkrecht zu den schon vorhandenen älteren Zellwänden gestellt (Regel der rechtwinkligen Schneidung), wobei die Richtungen: mehr oder weniger parallel zur Organoberfläche (perikline Zellwände) und senkrecht dazu (antikline Wände) bevorzugt werden.

B. Die Dauergewebe.
Die Dauergewebszellen unterscheiden sich von den embryonalen Zellen dadurch, daß in ihnen im allgemeinen keine Zellteilungen mehr stattfinden, daß sie meist viel größer, verhältnismäßig plasmaarm und reich an großen Vakuolen oder gar tot sind, und daß ihre Zellhäute verschiedenartig verdickt und oft chemisch verändert sind. Meist wird das Dauergewebe von Interzellularen durchzogen. Es besteht gewöhnlich aus verschiedenen Zell- und Gewebearten, die auch ganz verschiedenen Funktionen dienen.

Das Dauergewebe geht dadurch aus den embryonalen Zellen hervor, daß letztere sich strecken, stellenweise auseinander weichen, ihre Zellwände verdicken und chemisch verändern, ihren Zellinhalt eigenartig weiter ausgestalten, oft auch einbüßen, und unter Umständen miteinander durch Auflösung der trennenden Wände verschmelzen. Das Streckungswachstum vollziehen die embryonalen Zellen oft ganz unabhängig voneinander (Fig. 172), so daß einzelne, die sich besonders stark strecken, sich mit ihren Enden oder ihren Kanten zwischen andere und aneinander vorbeischieben (gleitendes Wachstum[46].

Man kann die Dauergewebe in verschiedener Weise einteilen, einmal nach ihrer Herkunft. Primäre Dauergewebe sind solche, die aus den Urmeristemen hervorgehen; die sekundären sind solche, die den sekundären Meristemen ihre Entstehung verdanken.

Eine morphologisch brauchbarere Einteilung der Dauergewebe gewinnen wir, wenn wir sämtliche Verschiedenheiten der Dauerzellen, der Zellarten, in Betracht ziehen, die sie zusammensetzen.

Früher berücksichtigte man dabei hauptsächlich die Dimensionen der Zellen und unterschied Parenchyme und Prosenchyme. Parenchym nannte man ein Zellgewebe, dessen Zellen isodiametrisch sind oder, falls sie in einer Richtung gestreckt sind, mit queren Wänden aneinander grenzen; als Prosenchyme dagegen bezeichnete man solche Dauergewebe, die aus gestreckten, beiderseits zugespitzten, also spindelförmigen oder faserförmigen und mit ihren zugespitzten Enden fest zwischeneinander greifenden Elementen[S. 41] bestehen. Diese beiden Gruppen genügen aber nicht, um eine Übersicht über die Mannigfaltigkeit der Gewebearten zu ermöglichen. Ja selbst ihre Begriffsbestimmungen sind veraltet.

Untersucht man vergleichend die höheren Gewächse, so findet man zunächst Gewebe, die, wie die Gewebe der niedersten vielzelligen Pflanzen, aus lebenden, nährstoffhaltigen Zellen mit meist ziemlich dünnen Zellulosewänden bestehen und vielseitige Funktionen haben; wir wollen sie auch als Parenchyme bezeichnen. Daneben finden wir aber Gewebe, die sich durch ihre Baueigentümlichkeiten scharf von den Parenchymen unterscheiden und besonderen Funktionen dienen. Die auffälligsten Gewebe sind nach ihren Hauptfunktionen die Abschlußgewebe, die mechanischen oder Festigungsgewebe und die Leitgewebe. Als besondere Gewebe kann man weiter noch die Sekretgewebe und die Drüsengewebe betrachten. Die Parenchyme bilden das parenchymatische System, das primäre Abschlußgewebe das Hautgewebesystem, die Festigungsgewebe das mechanische und die Leitgewebe das Leitbündelgewebesystem.

Nicht selten begnügt man sich auch mit der Einteilung aller Dauergewebe in Haut-, Leitbündel- und Grundgewebesystem.

1. Parenchym, Parenchymsystem. Bezeichnend für diese Gewebeart, die zu den phylogenetisch ältesten Geweben (vgl. S. 38) gehört, ist die Parenchymzelle. Sie kann isodiametrisch oder gestreckt sein, hat verschiedenen Umriß und wird (vgl. Fig. 3 B, Fig. 40, 41) durch die folgenden Merkmale gekennzeichnet: Die wenig verdickte Zellmembran bereitet dem Stoffaustausche keine Schwierigkeiten; sie besteht in der Regel aus Kohlehydratlamellen. Sie besitzt außerdem einfache runde oder elliptische Tüpfel, die den Stoffverkehr zwischen den Zellen noch mehr erleichtern. Lebendes Protoplasma ist meist vorhanden; es umschließt große Vakuolen, die in Menge Nährstoffe enthalten können. Die Chromatophoren, die meist als Leuko- oder Chloroplasten ausgebildet sind, enthalten oft mehr oder weniger Stärke. Das Parenchym ist zur Durchlüftung meist von Interzellularen durchzogen. Es kann ebensogut sekundäres wie primäres Dauergewebe sein. Die Parenchymzelle dient, wie schon erwähnt, noch vielerlei Funktionen. In ihr spielen sich die wichtigsten Lebensvorgänge der ausgewachsenen Pflanze ab: die Nährstoffbereitung, -leitung und -speicherung, die Atmung und die Wasserspeicherung; außerdem dient sie infolge ihrer prallen Füllung mit Zellsaft der allgemeinen Festigung des Pflanzenkörpers. Entsprechend der Vielseitigkeit der Leistungen ergeben sich kleine Bauverschiedenheiten zwischen den Parenchymzellen, je nach der Funktion, der sie hauptsächlich dienen. Sind die Zellen reich an Chloroplasten, so nennt man das Parenchym Assimilationsparenchym (Fig. 8), entsprechend seiner wichtigsten Aufgabe: aus Kohlensäure organische Substanz zu bilden. In dieser Weise ist das Parenchym vielfach in oberirdischen Pflanzenteilen ausgebildet, soweit das Licht in sie einzudringen vermag. Weiter im Innern liegen farblose Parenchyme. Sind sie besonders reich an organischen Inhaltsstoffen, wie Zucker, Stärke, fetten Ölen und Eiweißstoffen, oder in den alsdann stark verdickten Zellmembranen an Hemizellulosen (Fig. 39), lauter Stoffen, die aufgespeichert sind, um später wieder in den Stoffkreislauf gezogen zu werden, so spricht man von Speichergewebe (Fig. 23 A, 24). Parenchym, das der Wasserspeicherung dient, bezeichnet man als parenchymatisches Wassergewebe; es besteht gewöhnlich aus besonders großen, plasmaarmen, aber sehr zellsaftreichen, häufig mit dünnem Schleime gefüllten, dünnwandigen Zellen, die sich bei Wasserabgabe stark verkleinern. Die Leitung organischer Nährstoffe, namentlich der Kohlehydrate, findet in Parenchymzellen statt, die zur Erleichterung des Stofftransportes meist in der Hauptleitungsrichtung langgestreckt sind, dem Leit[S. 42]parenchym, das oft in mantelförmigen lückenlosen Scheiden um andere Gewebemassen auftritt. Parenchym, das von besonders großen Interzellularen zur starken Durchlüftung oder Luftspeicherung durchzogen ist, heißt Aërenchym (Durchlüftungsgewebe).

2. Abschlußgewebe. In vielzelligen Gewebekörpern besteht, namentlich bei Landpflanzen, die Notwendigkeit, den ganzen Körper oder einzelne Gewebe gegen schädliche Wasserverluste, gegen mechanische Verletzungen, gegen zu hohe Erwärmung[47] und oft auch gegen Verluste von diffusiblen Nährstoffen zu schützen. Diese Aufgabe haben Zellen, die meist in Schichten (Scheiden) angeordnet sind, durch besondere Baueigentümlichkeiten erhalten. Dadurch ist eine Reihe weiterer Gewebearten entstanden, deren Hauptelemente die Epidermiszellen und die verkorkten Zellen sind. Die Epidermiszellen bilden die Epidermis und zusammen mit anderen Zellarten das Hautgewebesystem.

a) Hautgewebesystem. 1. Epidermis. Die Epidermis oder Oberhaut geht stets aus oberflächlich gelegenen Urmeristemschichten (dem Dermatogen, vgl. S. 74) hervor, ist also ein primäres Dauergewebe. Sie schließt als eine schützende Hülle den Pflanzenkörper nach außen ab, vermittelt aber zugleich den Stoffaustausch mit der Außenwelt. In typischer Ausbildung ist sie fast immer einschichtig (Fig. 45 B) und besteht aus lückenlos zu einer abziehbaren Haut miteinander verbundenen, in Flächenansicht tafelförmigen oder auch langgestreckten lebenden Zellen, deren seitliche Umrisse meist wellig (Fig. 43) oder zackig sind, was die Festigkeit ihres seitlichen Verbandes erhöht. Im Querschnitt sind die Zellen tafel-, linsen- oder pflastersteinförmig. Die Protoplasten der Oberhautzellen sind gewöhnlich auf dünne Wandbeläge beschränkt, ihre großen Safträume meist mit farblosem, manchmal aber auch gefärbtem Zellsafte gefüllt. Die Epidermis am Lichte wachsender Teile der meisten Farne, doch auch einer großen Zahl von Schatten liebenden Phanerogamen, ist mit Chlorophyllkörnern ausgestattet und alsdann auch an der Assimilationsarbeit der Pflanze beteiligt. Bei fortgeschrittenerer Arbeitsteilung unterbleibt aber auch an oberirdischen Organen die Ausbildung der Chlorophyllkörner in der Epidermis.

Fig. 43. Flächenansicht der Epidermis auf der Blattoberseite von Mercurialis perennis. Vergr. 300. Nach H. SCHENCK.
Alle für längere Lebensdauer eingerichteten, oberirdischen Pflanzenteile haben, im Gegensatz zu den vergänglichen Blumenblättern, verdickte Epidermisaußenwände. Diese Verdickung kommt durch Anlagerung von Zelluloseschichten zustande, von denen namentlich die äußeren hierauf meist, doch nicht immer, mehr oder weniger stark kutinisieren (Fig. 188). Die Kutinisierung kann sich auch auf die mittleren Lamellen der Seitenwände erstrecken. An den unter Wasser lebenden und unterirdischen Pflanzenteilen, vor allem also den Wurzeln, bei denen die Oberhaut oft besondere Funktionen, z. B. die Absorption von Wasser und Salzen hat, sind die Außenwände dagegen dünn und nicht kutinisiert.

Die Außenwände der Epidermen, mögen sie verdickt oder unverdickt sein, sind außerdem, abgesehen von den Wurzeln, auf ihrer Außenseite von einem zarten Kutinhäutchen, der Kutikula, bedeckt, das ununterbrochen über sie fortläuft und auf den primären Außenwänden der Epidermiszellen entsteht. Häufig ist die Kutikula ohne Rücksicht auf die Zellgrenzen etwas[S. 43] gefältelt; sie sieht alsdann in Flächenansicht gestreift aus. Die Kutikula und die kutinisierten Schichten sind infolge ihres Gehaltes an Kutinen für Wasser und Gase schwer durchlässig, und zwar um so schwerer, je dicker sie sind; sie verhindern in wirksamster Weise schädliche Wasserverluste des Gewebekörpers durch Verdunstung. Die Verdickung erhöht zugleich die mechanische Festigkeit der Oberhautzellen. Den Wurzeln wird durch den Mangel der Kutikula die Aufnahme des Bodenwassers und der Bodensalze erleichtert.

In die Kutikula und in die kutinisierten Membranschichten ist oft noch Wachs eingelagert, das sie noch weniger durchlässig für Wasser macht. Von solchen Epidermen fließt das Regenwasser ab, ohne sie zu benetzen. Tritt das Wachs aus der Kutikula nach außen hervor, so entstehen Wachsüberzüge, die an Früchten, so besonders auffällig an Pflaumen, Weinbeeren und anderen Organen einen hellgrauen, abwischbaren Reif bilden. Sie können aus Körnchen (so z. B. bei den Pflaumen und Weinbeeren), kürzeren oder längeren Stäbchen (Fig. 44) oder Krusten bestehen und lösen sich in Äther oder in heißem Alkohol.

Fig. 44. Querschnitt durch einen Stengelknoten des Zuckerrohrs mit stäbchenförmigen Wachsausscheidungen. Vergr. 540. Nach STRASBURGER.
Das Pflanzenwachs besteht gleich den Suberinen und Kutinen aus Fettsäureestern des Glyzerins, denen aber freie höhere Fettsäuren und Fettsäureester anderer Alkohole beigemischt sind.

Vielfach schützt die Epidermis das umschlossene Gewebe nicht nur gegen schädliche Wasserverluste durch Erschwerung der Wasserdampfabgabe, sondern auch dadurch, daß sie ein Wasserbehälter ist: Die meist unverdickten Seitenwände legen sich bei Abgabe des Wassers, das im Zellraume gespeichert ist, in Falten, um sich wie in einem Blasebalge bei neuer Füllung der Zellen wieder zu strecken. Solche Epidermen sind manchmal auch mehrschichtig.

Die Widerstandsfähigkeit der Epidermisaußenwände wird in bestimmten Fällen durch Einlagerung von Kalk oder Kieselsäure erhöht. Bei den Schachtelhalmen (Equiseten) ist die Verkieselung so stark, daß man sie zum Polieren von Zinngefäßen nutzbar machen kann. Die Fruchtschale der Graminee Coix Lacryma ritzt sogar Opal.

Eine besondere Mannigfaltigkeit in der Art der Verdickung und in dem Verhalten der Verdickungsschichten findet man an den Epidermiszellen der Früchte und häufiger noch der Samen. Die Epidermen besorgen hier nicht allein den Abschluß der inneren Teile, sondern fördern vielfach auch die Verbreitung und Befestigung der Früchte und Samen, oder sie bilden druckfeste Samenschalen.

2. Spaltöffnungsapparate[48]. Bei den höher organisierten Gewächsen sind sehr bezeichnend für die Epidermen der meisten oberirdischen, namentlich grünen Teile, die in der Luft und nicht in Wasser wachsen, Paare gekrümmter, halbmondförmiger Zellen, die eine Lücke, einen Spalt (Porus), zwischen sich lassen. Sie heißen Schließzellen und samt den Spalten Spaltöffnungen (Stomata) oder Spaltöffnungsapparate (Fig. 45 A, 46). Die größten Spaltöffnungsapparate hat man bei den Gräsern beobachtet, so beim Weizen von 0,079 mm Länge und 0,039 mm Breite mit einer 0,038 mm[S. 44] langen und 0,007 mm breiten Spalte. In der Epidermis der Wurzeln kommen dagegen solche Spaltöffnungen niemals vor.

Der Spalt unterbricht die lückenlose Schicht der Epidermiszellen; er ist ein mit Luft gefüllter Interzellulargang, der unter der Oberhaut in einen großen Interzellularraum (Fig. 45 B) mündet, den man Atemhöhle genannt hat, obwohl er mit Atmung nichts zu tun hat. Dieser Raum steht mit den Interzellularen des Parenchyms in Verbindung. Die Spalten sind für die Pflanzen von größter Bedeutung; denn sie setzen das Interzellularsystem, das der Durchlüftung der Gewebe dient, in Verbindung mit der Außenluft. Solche Verbindungen sind aber wegen des lückenlosen Verbandes der Epidermiszellen, wenn diese infolge der Ausbildung einer Kutikula für Gase schwer durchlässig sind, unbedingt nötig, damit die Interzellularenluft genügend schnell erneuert, in den grünen Pflanzenteilen namentlich die verbrauchte Kohlensäure ersetzt werden kann. Dagegen vermag der in der Luft reichlich vorhandene Sauerstoff auch durch die Epidermiszellen, selbst wenn sie von einer Kutikula überzogen sind, meist in hinreichender Menge in die Pflanzenteile einzudringen.

Die Schließzellen enthalten stets Chlorophyll und zeichnen sich, abgesehen von ihrer Form, durch ihre Wandverdickungen aus, die an Querschnitten (Fig. 45 B, 47 B) kenntlich werden. Diese Verdickungen bestehen meist aus je einer oberen und unteren Verdickungsleiste an der Spaltseite (der Bauchseite) der Schließzellen, während die Wand dort in halber Höhe ebenso wie die ganze Rückenwand dünn bleibt (Fig. 45 B). Die Verdickungen haben zu den Gestaltsänderungen, zu denen die Schließzellen befähigt sind, Beziehung. Die Schließzellen haben nämlich die Aufgabe, durch solche Gestaltsveränderungen die Spaltenweite zu verändern: durch Verringerung ihrer Krümmung den Spalt z. B. etwa zu Zeiten allzu großen Wasserverlustes zu schließen, durch Zunahme ihres Volumens und Verstärkung ihrer Krümmung ihn zu anderen Zeiten weit zu öffnen. Sie sind Regulatoren des Gasaustausches und der Transpiration.

Fig. 45. Epidermis der Blattunterseite von Tradescantia virginica. A In Flächenansicht von außen, B im Querschnitt. Vergr. 240. Nach STRASBURGER.

Fig. 46. Epidermis mit Spaltöffnungen auf der Blattunterseite von Helleborus niger. Vergr. 120. Nach STRASBURGER.

Wie unser Querschnitt in Fig. 45 B lehrt, springen die Verdickungsleisten der Schließzellen über und unter der Spalte vor. So erweitert sich die Spaltöffnung meist oberhalb der Zentralspalte zum sog. Vorhofe, unter ihr zum Hinterhofe. An den Einfügungsstellen der Schließzellen verdünnt sich die verdickte Außenhaut der angrenzenden Epidermiszellen oft plötzlich, wodurch gewissermaßen Scharniere, Haut[S. 45]gelenke, entstehen, die den Schließzellen die Gestaltsveränderungen erleichtern (vgl. Fig. 47 B). Häufig werden die Schließzellen, wie in Fig. 45 A zu sehen ist, von besonderen, schwächer verdickten oder weniger hohen Epidermiszellen umgeben, den Nebenzellen der Spaltöffnungsapparate.

Der Bau der Schließzellen und in Abhängigkeit davon auch die Mechanik ihrer Öffnungs- und Schließbewegungen ist übrigens verschieden. Zwei Hauptarten der Spaltöffnungsapparate lassen sich dementsprechend unterscheiden, die aber durch Übergänge miteinander verbunden sind: beim ersten Typus ändern die Schließzellen ihre Form hauptsächlich parallel zur Epidermisoberfläche, beim zweiten dagegen senkrecht zur Epidermis. Typus I. Je nach dem Bau der Schließzellen kann die Spalte wieder in verschiedener Weise geöffnet werden. a) Amaryllideentypus (Fig. 47, bei den meisten Mono- und Dikotylen ausgebildet). Die Rückenwand jeder Schließzelle (Fig. 47 B) ist unverdickt, die Bauchwand dagegen verdickt, und zwar meist durch eine obere und untere Verdickungsleiste. Nimmt der Turgor der Zelle zu, so wird die dünne Rückenwand stärker gedehnt als die verdickte Bauchwand, und die Zelle, die im wenig gedehnten Zustand kaum gekrümmt war, wird in tangentialer Richtung halbmondförmig gekrümmt. b) Gramineentypus (Fig. 48, bei den Gramineen und Cyperaceen). Die Schließzelle hat hantelförmige Gestalt. Die erweiterten Enden sind dünnwandig, das schmalere mittlere Verbindungsstück dagegen hat sehr stark verdickte Außen- und Innenwände (Fig. 48 B). Bei der Turgorzunahme der Zelle werden die eiförmigen dünnwandigen Enden gedehnt und dadurch die starren Mittelstücke der Schließzellen in tangentialer Richtung voneinander entfernt. Typus II. Mniumtypus (Fig. 49, bei manchen Moosen und Farnen). Die Bauchwände der Schließzellen sind dünn, dagegen die Rückenwände verdickt, Außen- und Innenwände entweder verdickt oder unverdickt. Nimmt der Turgor in der Zelle zu, so entfernen sich die Außen- und Innenwände voneinander, wobei die Krümmung der dünnen Bauchwand abnimmt und die Spalte sich erweitert, während die Rückenwand ihre Lage nicht ändert. Einen Übergang zwischen Typus I und II stellen z. B. die Spaltöffnungsapparate von Helleborus dar (vgl. Fig. 238); hier werden die Schließzellen durch Dehnung der dünnen Rückenwände stärker halbmondförmig gekrümmt und zugleich die verdickten Außen- und Innenwände voneinander entfernt.

Fig. 47.

Fig. 48.

Fig. 49.
Fig. 47 bis 49. Typen von Spaltöffnungsapparaten. Die starken Linien geben die Formen der Schließzellen bei geöffneten Spalten, die dünnen Linien bei geschlossenen Spalten wieder.
Fig. 47. Amaryllideentypus, A in Flächenansicht, B im Querschnitt.
Fig. 48. Gramineentypus mit den beiden Nebenzellen, A in Flächenansicht, B im Querschnitt.
Fig. 49. Mniumtypus im Querschnitt, nach HABERLANDT.
Im übrigen vgl. den Text.
Die Schließzellen entstehen durch Teilung junger Epidermiszellen. Im einfachsten Falle zerfällt eine solche Zelle dabei in eine kleinere inhaltsreichere Zelle, die zur Schließzellenmutterzelle wird, und in eine größere inhaltsärmere, die sich zu einer gewöhnlichen Epidermiszelle oder zu einer Nebenzelle ausbildet. Die Mutterzelle rundet sich ellipsoidisch ab und teilt sich durch eine Längswand in die beiden Schließzellen. In der Längswand bildet sich hierauf der Spalt als schizogener Interzellulargang aus. Bei Spaltöffnungsapparaten mit Nebenzellen folgen mehrere Zellteilungen innerhalb einer jungen Epidermiszelle[S. 46] in bestimmter Weise aufeinander, bevor die Schließzellenmutterzelle entsteht, oder die Nebenzellen entstehen durch Teilungen von jungen Epidermiszellen, die an die Spaltöffnungen angrenzen.

3. Haare. Der Epidermis fast keiner Pflanze fehlen Haare (Trichome). Die Haare sind entweder einzellige Gebilde, und zwar papillen- (Fig. 50), schlauch- (Fig. 51) oder pfriemförmige (Fig. 52, 53, 56 links) Ausstülpungen der Epidermiszellen. Oder sie sind mehrzellig, nämlich Zellreihen, gestielte und ungestielte Zellflächen (Schuppenhaare, Fig. 55), die die Gestalt von Blättchen haben können, wie z. B. die Spreuschuppen der Farne, oder Zellkörper, die in der Epidermis befestigt sind. Auch die mehrzelligen Trichome gehen ausschließlich aus jungen Epidermiszellen, und zwar meist je aus einer solchen, der Initialzelle des Haares, durch Wachstum und Teilung hervor. Die einzelligen und mehrzelligen Haare sind ferner unverzweigt oder verzweigt (Fig. 54, Sternhaare); sie haben dünne und weiche Membranen oder stark verdickte, häufig verkalkte oder verkieselte Seitenwände und stechende Spitzen (Borstenhaare, Fig. 52 rechts); ihre Protoplasten sind entweder lebend, denen der Epidermiszellen ähnlich, oder abgestorben. Abgestorbene Haarzellen, die (infolge totaler Lichtreflexion) meist weiß aussehen, sind mit Luft gefüllt oder seitlich zusammengedrückt (so an den langen einzelligen Haaren der Baumwollsamen, Fig. 53, aus denen man das Baumwollgewebe und die Watte macht). Stets wird an den Haaren der in der Epidermis steckende Teil als Fußstück von dem herausragenden Haarkörper unterschieden. Die Epidermiszellen, die das Fußstück umgeben, sind oft ring- oder strahlenförmig angeordnet; man nennt sie Nebenzellen des Haares. Sehr eigenartig gebaut sind die borstenförmigen Brennhaare, die sich bei den Brennesseln (Fig. 52) und den Loasaceen finden.

Fig. 50. Oberhaut vom Blumenblatte des Stiefmütterchens. Die Zellen mit faltenartigen Leisten an den Seitenwänden und mit vorspringenden Papillen. Vergr. 250. Nach H. SCHENCK.

Fig. 51. Wurzelhaare (B) und ihre Entstehung (A), halb schematisch. Wurzelepidermis im Längsschnitt. Nach ROTHERT.

Fig. 52. Brennhaar von Urtica dioica, nebst einem Stück Epidermis, auf dieser rechts ein kleines einzelliges Borstenhaar. Vergr. 60. Nach STRASBURGER.

Sie gehen aus einer Epidermiszelle hervor, die während der Haarbildung stark anschwillt und von benachbarten Epidermiszellen becherförmig umwachsen wird. Durch Zellvermehrung[S. 47] in dem Gewebe, das an den Haarfuß angrenzt, erhält das Haar gleichzeitig einen säulenförmigen Stiel. Die Haarzelle spitzt sich oben zu und endet mit einem kleinen, schräg aufgesetzten Köpfchen. Unter diesem Köpfchen bleibt die Haarwandung unverdickt. Das glasartig spröde Ende des Haares ist verkieselt, die übrigen Wandteile bis auf die untere Anschwellung sind verkalkt. Wird das Köpfchen des starren Haares leise berührt, so bricht es ab; die Haarspitze erhält nun die Form einer Einstechkanüle und dringt in die Haut ein, in die der Inhalt des Haares sich ergießt. Dieser enthält ein sehr giftiges Toxin, das nach G. HABERLANDT eine eiweißähnliche Substanz ist und in der Wunde eine mit brennendem Schmerz verbundene Entzündung hervorruft. Sie kann, durch gewisse tropische Brennesseln verursacht, gefährlich werden und starrkrampfähnliche Zustände zur Folge haben.

Fig. 53. Samenhaare der Baumwollpflanze. A Ein Stückchen der Samenschale mit Haaren, dreimal vergrößert. B1 Ansatzstelle und unterer Teil, B2, mittlerer Teil, B3 oberer Teil eines Haares. Vergr. 300. Nach STRASBURGER.

Fig. 54. Sternhaar in Flächenansicht, von der Blattunterseite der Levkoje (Matthiola annua). Vergr. 90. Nach STRASBURGER.

Fig. 55. Schuppenhaar, A in Flächenansicht, B im Längsschnitt von der Blattunterseite der Elaeagnacee Shepherdia canadensis. Vergr. 240. Nach STRASBURGER.

Die Haare haben also sehr verschiedenen Bau und sie haben auch recht verschiedene Funktionen. Vielfach unterstützen sie die Epidermis in ihren schützenden Aufgaben. Alsdann bilden sie Überzüge an ausgebildeten oder wachsenden Pflanzenteilen, besonders häufig aber in der Knospe an den jungen Pflanzenteilen, die sie umhüllen. Solche Überzüge, die seidig oder filzig sind, wenn sie aus abgestorbenen Wollhaaren bestehen, können die Transpiration herabsetzen und als Schirm gegen direkte Besonnung schützen. Die Wurzelhaare, schlauchförmige Ausstülpungen der lebenden Wurzelepidermiszellen (Fig. 51 B,[S. 48] 155 r), dienen der Wasseraufnahme. Drüsenhaare (Fig. 75, 76, 77) scheiden Stoffe sehr verschiedener Art aus.

In den Dienst der Aufnahme mechanischer Reize treten nach G. HABERLANDT[49] bestimmte plasmareiche Haare. Sie kommen an Staubgefäßen, Blumenblättern und Blattgelenken vor und haben eigenartigen Bau; sie werden als Fühlpapillen, Fühlhaare oder Fühlborsten bezeichnet.

4. Emergenzen. Ähnliche Funktionen wie viele Haare haben Auswüchse auf der Epidermis, an deren Bildung sich im Gegensatz zu den Haaren außer der Oberhaut noch mehr oder weniger tief reichende Teile des darunter liegenden Gewebes beteiligen. Man nennt sie Emergenzen. Bald sind es Haftorgane, bald Drüsen.

Nur wenige subepidermale Zellreihen setzen sich beispielsweise in die, sonst bloß aus Epidermis aufgebauten Auswüchse (Drüsenzotten) fort, die sich an den Enden und an den Zähnen der Nebenblätter des Stiefmütterchens (Viola tricolor) befinden (Fig. 56). Tiefer reichende Zellschichten sind hingegen am Aufbau jener Auswüchse beteiligt, die als ankerförmige Haftorgane den Früchten der Hundszunge (Cynoglossum) aufsitzen, über 1 mm Länge erreichen und der Verbreitung der Früchte durch Tiere dienen. Noch größere Emergenzen sind die Stacheln, die z. B. dem Rosenstrauch und den Brombeersträuchern beim Klettern behilflich sind.

Fig. 56. Eine Drüsenzotte vom Nebenblatt der Viola tricolor, neben ihr ein einzelliges Haar. Vergr. 240. Nach STRASBURGER.
b) Abschlußgewebe aus verkorkten Zellen. In sehr vielen Fällen, namentlich wo die Epidermis nicht während der ganzen Lebensdauer des umschlossenen Organes lebt und tätig ist, wird der Abschluß des Körpergewebes nach außen, z. B. auch der Schutz gegen zu starke Erwärmung, noch viel wirksamer von Schichten verkorkter Zellen übernommen. Solche Zellen werden in Form von Schichten oder Scheiden sehr oft auch zur Abgrenzung und zum Abschlusse lebender Gewebemassen gegen andere im Innern des Körpers verwendet. Sie können primären oder sekundären Ursprungs sein. Die Verkorkung kommt dadurch zustande, daß in jeder Zelle an die zunächst unverkorkten Kohlehydratmembranen eine Suberinlamelle als sekundäre Verdickungsschicht angelagert wird, auf die noch tertiäre, nicht verkorkte Verdickungsschichten folgen können. Einige Schichten der Membranen sind oft verholzt. Wir können drei Arten verkorkten Abschlußgewebes unterscheiden: 1. das Kutisgewebe, 2. die Endodermis, 3. den Kork.

1. Das Kutisgewebe ist ein primäres Dauergewebe. Es entsteht durch manchmal schon sehr frühzeitige Verkorkung von Zellen, z. B. der Epidermis, oder dünnerer oder dickerer oft lückenlos verbundener Parenchymschichten. Kutisgewebe letzterer Art schließt in Form einer ein- oder mehrschichtigen Scheide nicht selten ältere Pflanzenteile (z. B. Wurzeln, deren Epidermis frühzeitig zugrunde geht, Fig. 156 ex) nach außen oder Gewebestränge im Innern des Pflanzenkörpers gegen das umliegende Gewebe ab. Die Kutiszellen behalten in der Regel ihren lebenden Inhalt.

An Stelle der Verkorkung kann manchmal auch die Einlagerung von Kutin oder anderen chemisch noch wenig erforschten Substanzen die Membranen schwer durchlässig für Wasser machen.

2. Endodermis. Diese Gewebeart wird aus den Endodermiszellen gebildet[50]. Die Endodermis tritt in Scheidenform auf; sie dient ebenfalls, und zwar besonders häufig, als einschichtige Schutzscheide der Abgrenzung[S. 49] und dem Abschlusse lebender Gewebemassen gegen andere im Innern des Körpers, doch auch als Abschluß nach außen. Sie ist bald primären, bald sekundären Ursprungs. Die prismatischen, langgestreckten Endodermiszellen sind lebende Zellen, die lückenlos zusammenschließen. In jugendlichem Zustande sind ihre Membranen noch nicht verkorkt; in den radialen Seitenwänden ist aber ein schmaler Membranstreifen in Form eines Bandes, das die Zelle rings umläuft und für gewisse, in Wasser gelöste Stoffe schwer durchlässig ist, durch Einlagerung eines noch nicht näher erkannten (holzähnlichen?) Stoffes eigenartig verändert (Fig. 57 A). Dieser Streifen erscheint im Querschnitte als dunkler Punkt oder als dunkles, linsenförmiges Gebilde (CASPARYscher Punkt, Fig. 57 B und Fig. 158 bei S), im radialen Längsschnitte als meist etwas welliges Band. In älteren Endodermiszellen wird wie bei den Kutiszellen an die Zellhaut ringsum eine sekundäre Verdickungsschicht aus Korksubstanz angelagert, der noch dicke tertiäre, oft stark verholzende Kohlehydratschichten folgen können.

Fig. 57. A Schematische räumliche Darstellung einer Endodermiszelle mit dem CASPARYschen Streifen in den radialen Zellwänden. B Endodermis im Querschnitt. Der CASPARYsche Streifen erscheint in Form einer dunklen linsenförmigen Figur.

Fig. 58. Querschnitt durch Flaschenkork. Vergr. 120.

Fig. 59. A Tangentialer Schnitt, B Querschnitt durch die Korkhaut eines Lindenzweiges. Vergr. 120. Die Zellmembranen in B weiß, der abgestorbene Zellinhalt punktiert gezeichnet.

In einschichtiges Kutisgewebe und in die Endodermis sind nicht selten einzelne Zellen von abweichender Form mit unverkorkten Zellwänden zerstreut eingeschaltet, die man als Durchlaßzellen bezeichnet.

3. Kork. Wie die Epidermis und das Kutisgewebe stets primäre Dauergewebe sind, so ist der Kork immer ein sekundäres Gewebe, das der Tätigkeit eines sekundären Meristems, des Korkkambiums, seine Entstehung verdankt. Das Korkgewebe bildet wie die Epidermis in der Regel peripherische, aber mehrschichtige Scheiden in Form dünner grauer und glatter Korkhäute oder dicker, außen rissiger Korkkrusten aus regelmäßigen radialen Zellreihen (Fig. 58, 59) da, wo an ober- oder unterirdischen Pflanzenteilen die Epidermis abgestoßen oder lebendes Parenchym durch Verwundungen freigelegt wird. Die Korkzellen sind meist lufthaltige und durch den abgestorbenen Inhalt gebräunte Zellen. Sie haben meist prismatisch-tafelförmige Gestalt mit tangential gestellter Grundfläche (Fig. 59 A), schließen lückenlos zusammen und sind mit verkorkten sekundären Membranschichten[S. 50] versehen, während die Mittellamellen zwischen ihnen oft verholzt sind. Tertiäre Verdickungsschichten fehlen in ihnen oder bestehen aus Zellulose und bilden die sog. Zelluloseschicht, die übrigens auch verholzt sein kann. Schon dünne Korkhäute, die aus wenigen Zellschichten bestehen (Fig. 59), vermindern die Transpiration an der Oberfläche der Pflanzenteile sehr, und zwar infolge der allseitigen Verkorkung der Zellhäute begreiflicherweise viel stärker als die Epidermis; dickere Korklagen (Krusten) verhindern außerdem das Eindringen von Schmarotzern. Zudem besitzt Korkgewebe ein geringes Wärmeleitungsvermögen, schützt also wirksam gegen zu hohe Erwärmung.

Korkhäute überziehen viele ältere Stengel, Stämme, Knollen, Knospenschuppen und Früchte; aus einer Korkhaut besteht z. B. die Kartoffelschale. Die Korkeiche besitzt eine Korkkruste, aus der die Flaschenkorke hergestellt werden.

Die sehr selten getüpfelten Wände der fertigen Korkzellen bleiben entweder verhältnismäßig dünn (Fig. 58) oder werden mehr oder weniger stark verdickt (Fig. 59, 183 p). Stark verdickte Korkzellen bilden den Steinkork. Die Korkzellen können mit dem abgestorbenen, meist braunen Inhalt ganz angefüllt sein (Fig. 59 B).

Häufig wechseln im Korkgewebe Schichten verkorkter und unverkorkter Zellen miteinander ab. Letztere Schichten, deren Elemente sich nach Bau und Inhalt sonst nur wenig von den Korkzellen unterscheiden, dünn- oder dickwandig sind und ebenso wie diese entstehen, bezeichnet man als Phelloidgewebe.

Gewebemassen von noch verwickelterem Bau als der Kork bilden die Borke, die an älteren Stämmen und Wurzeln als Abschlußgewebe an Stelle des Korkes tritt (vgl. S. 139).

Fig. 60. Querschnitt durch eine Lentizelle von Sambucus nigra. e Epidermis, pc Korkkambium, pd aus dem Korkkambium nach innen abgeschnittene Parenchymzellen, pl Korkkambium der Lentizelle, l Füllzellen. Vergr. 90. Nach STRASBURGER.
Lentizellen. Durch die Bildung eines von Interzellularen freien Korkmantels an Stelle einer Epidermis würde der Gasaustausch zwischen der Atmosphäre und dem Innern des Stammes aufgehoben werden, wenn nicht für einen Ersatz der Spaltöffnungen gesorgt würde. Das geschieht bei manchen Pflanzen, z. B. Clematis-, Vitis-, Lonicera-Arten, durch Porenkork, d. h. dadurch, daß in die Korkhaut ovale oder rundliche, eng umschriebene Flecke aus etwas kleineren verkorkten Zellen eingeschaltet sind, die Interzellularen zwischen sich lassen, meist aber durch die Lentizellen: längliche oder spindelförmige, rauhe und poröse vorspringende Warzen, die man schon mit bloßem Auge auf den Korkhäuten der Zweige unserer Holzgewächse sehen kann. Sie bestehen aus abgestorbenem, meist unverkorktem und an Interzellularen reichem[S. 51] Gewebe (Füllzellen), das pfropfenartig in das Korkgewebe eingesetzt ist (Fig. 60). Die Interzellularen münden in die Außenluft und setzen sich in das Interzellularsystem des lebenden Gewebes fort.

Die Lentizellen entstehen oft unter den Spaltöffnungen, und zwar sogleich zu Beginn der Korkbildung. Das Korkkambium, das auch unter den Spaltöffnungsapparaten auftritt, hier aber radial verlaufende Interzellularen zwischen seinen Zellen enthält, bildet an diesen Stellen (Fig. 60 pl) nach außen die Füllzellen mit Interzellularen (Fig. 60 l). Die Lentizellen durchbrechen alsbald die Epidermis und heben sie lippenförmig empor. Abwechselnd mit den Füllzellen erzeugt das Korkkambium in den Lentizellen namentlich zur Herabsetzung ihrer Durchlässigkeit während des Winters Schichten fester verbundener, verkorkter und verholzter Zellen, Zwischenstreifen oder Verschlußschichten, die später (im Frühling) gesprengt werden.

3. Mechanische oder Festigungsgewebe[51]. Ohne eine gewisse Festigkeit könnte die Pflanze ihre Gestalt nicht beibehalten, die meist für ihre Lebenstätigkeit unentbehrlich ist. Bei einzelnen Zellen und bei wachsenden Geweben wird die nötige Festigkeit durch die Zellmembranen, den Turgor (vgl. S. 191) und die Gewebespannung (vgl. S. 248) erzielt. Da indes die Zellhäute dünn sind, Turgor und Gewebespannung aber schon durch jeden stärkeren Wasserverlust aufgehoben werden (Welken der Pflanze), so reicht beides nicht aus, um der Pflanze, namentlich der Landpflanze, auf die Dauer die nötige Festigkeit zu verleihen. So sehen wir denn bei sehr vielen Pflanzen besondere Gewebe aus Zellen mit stark verdickten Membranen, das Sklerenchym und das Kollenchym, mit mechanischen Aufgaben betraut. Diese Gewebe werden auch Stereome genannt.

Welche Ansprüche an die Festigkeit und den Zusammenhang der Teile bei Pflanzen gestellt werden, das leuchtet sofort ein, wenn man sich z. B. einen Roggenhalm vergegenwärtigt, der, aus Hunderttausenden einzelner Zellen zusammengesetzt, bei einer Höhe von 1500 mm kaum 3 mm Durchmesser an seiner Basis mißt. Bis zu 3000 mm erheben sich die schlanken Schäfte des Pfeilrohrs bei einer Grundfläche von nur 15 mm Durchmesser. Die Höhe des Pfeilrohres beträgt das 200fache, die des Roggenhalmes gar das 500fache des Grunddurchmessers. Dabei trägt aber der Roggenhalm an seiner Spitze noch die schwere Last der Ähre, der schlanke Palmstamm die schweren und im Winde wie Segel wirkenden Blätter, die bei Raphia-Arten 15 m Länge und entsprechende Breite erreichen, und zeitweise noch die große Last der Früchte.

Neben seiner Festigkeit verfügt der Pflanzenkörper aber auch über eine Eigenschaft, die wir unseren Bauten nicht entfernt im gleichen Maße geben können; das ist seine außerordentliche Elastizität. Der Roggenhalm weicht der Gewalt des starken Windes aus, indem er seine Spitze bis zum Boden hinabbeugt, schnellt aber in die frühere Lage zurück, wenn die Wirkung des Windes aufhört. Die technischen Leistungen des Pflanzenkörpers sind also einzig in ihrer Art und höchst vollkommen. Von dem festen und zugleich elastischen Baumaterial, das die Pflanze sich herstellt, macht ja auch die Technik aller Völker den ausgedehntesten Gebrauch, indem sie Holz zu Stützen und Trägern, „Bastfasern“ zu Fäden, Tauen und Geweben (z. B. Leinwand) verwendet.

a) Als Sklerenchym bezeichnet man die Festigungsgewebe der ausgewachsenen Pflanzenteile. Sie sind aus Sklerenchymzellen (Steinzellen) oder aus Sklerenchymfasern („Bastfasern“) zusammengesetzt, beides Zellen mit sehr stark verdickten Zellmembranen aus Kohlehydratlamellen, die oft zugleich verholzt sind. Die Sklerenchymzellen oder Steinzellen (Fig. 30) sind mehr oder weniger isodiametrisch, polyëdrisch und haben runde, unverzweigte oder verzweigte Tüpfel in ihren fast stets stark verholzten Wänden.[S. 52] Die Sklerenchymfasern (Fig. 61) dagegen sind schmal spindelförmige, sehr langgestreckte Zellen mit zugespitzten Enden und mit spärlichen schräg aufsteigenden, spaltenförmigen Tüpfeln und haben polygonalen Querschnitt (Fig. 62); ihre Zellwände sind nahezu unverholzt (z. B. beim Lein) oder mehr oder weniger verholzt (z. B. beim Hanf). Die Sklerenchymfasern haben immer eine für Pflanzenzellen sehr bedeutende Länge, durchschnittlich von 1–2 mm. Sie können aber bei manchen Gewächsen noch sehr viel länger werden: beim Lein 20–40 mm, bei der Brennessel bis 77 mm, ja bei der Urticacee Boehmeria bis 220 mm. Solche langen Fasern sind für Gespinste besonders brauchbar. Sie werden erst nach vollendeter Streckung der Pflanzenorgane, vielfach unter Beteiligung von gleitendem Wachstum, fertiggestellt.

Die Sklerenchymzellen und -fasern können einzeln für sich vorkommen, so letztere z. B. in manchen Blättern, wo sie auch nicht selten verzweigt sind. Meist aber sind sie, namentlich die Fasern, ohne Interzellularen zwischen sich zu lassen, zu Sklerenchymsträngen, -bändern und -scheiden gruppenweise recht verschieden, aber so angeordnet, wie es die Ansprüche an die Biegungs-, Zug- oder Druckfestigkeit des ganzen Organs oder seiner Gewebegruppen unter Aufwand von verhältnismäßig wenig Festigungsmaterial erfordern. Druckfestigkeit, z. B. in den Schalen von Nüssen und von Steinen der Steinfrüchte, kommt meist durch Steinzellengewebe, Biegungs- und Zugfestigkeit, z. B. von Stengeln und Wurzeln, dagegen durch Sklerenchymfasergewebe zustande; beide Sorten mechanischer Zellen bedingen außerdem den Widerstand, den viele Organe dem Schneiden und anderen mechanischen Eingriffen entgegensetzen.

Die Festigkeit der einzelnen Zellen beruht auf der Verdickung ihrer Zellmembranen, die manchmal noch durch mineralische Einlagerungen verhärtet sind, die Zerreißungsfestigkeit der Sklerenchymfasergewebe außerdem auf der Verzahnung der Fasern miteinander. Infolge ihrer Faserform und der spindelförmigen Zuspitzung ihrer Enden ist nämlich die Verwachsung benachbarter Fasern eine sehr viel innigere als die anders gestalteter Zellen.

SCHWENDENERs Untersuchungen haben bestimmte Vergleichszahlen für die mechanischen Eigenschaften dieser Zellen ergeben. Danach kommt die Tragfähigkeit der Sklerenchymfasern innerhalb ihrer Elastizitätsgrenze (ihr Tragmodul) im allgemeinen der des besten Schmiedeeisens gleich; sie erreicht bei einzelnen Pflanzen sogar die des Stahls. Dabei ist die Dehnbarkeit gegen 10–15mal größer als die des Schmiedeeisens. Nach Überschreiten der Elastizitätsgrenze tritt alsbald Zerreißen ein, während bei dem Eisen die Festigkeitsgrenze erst bei etwa dreifacher Belastung erreicht wird. Für die Bedürfnisse der Pflanze hat es aber große Bedeutung, daß bei ihr die Elastizitätsgrenze bis nahe an die Festigkeitsgrenze reicht.

Fig. 61. Eine Sklerenchymfaser etwa 100mal vergr. Nach STRASBURGER.

Fig. 62. Querschnitt durch das Sklerenchym im Blatte der Liliacee Phormium tenax. Vergr. 240.

b) Das Kollenchym. Die Elemente des Sklerenchyms sind nicht mehr imstande, zu wachsen; sie können deshalb in Pflanzenteilen, die noch in lebhafter Streckung begriffen sind, keine Verwendung finden. Bedürfen solche Pflanzenteile außer der Festigkeit, welche Zell- und Gewebespannung ihnen[S. 53] verleihen, noch einer besonderen Verstärkung, so wird sie durch Kollenchym erreicht.

Die Kollenchymzelle, die isodiametrisch oder meist sehr langgestreckt (zugespitzt oder mit rechteckigem Umriß Fig. 64) ist, gleicht der Parenchymzelle und enthält wie diese oft Chlorophyll, unterscheidet sich aber von der Parenchymzelle wesentlich dadurch, daß ihre Zellulosemembran ungleich, besonders an den Zellkanten (Kantenkollenchym, Fig. 63) oder an den tangentialen Wänden (Plattenkollenchym) stark verdickt ist. Ferner fehlen in ihrem Plasma, abgesehen von großen Zellsaftvakuolen, leblose Einschlüsse. Auch die Interzellularen fehlen oder sind sehr klein. Das Kollenchym besitzt trotz hohem Wassergehalte infolge der Wandverdickungen seiner Elemente eine ansehnliche Festigkeit gegen Zerreißen. Dabei gibt es dem Wachstum seiner Umgebung dadurch nach, daß es selbst daran noch teilnimmt. Die großen unverdickten Wandflächen, in denen noch rundliche oder spaltenförmige Tüpfel vorhanden sind, ermöglichen zugleich einen schnellen Transport von Baustoffen innerhalb dieser Gewebeart. Auch das Kollenchym ist entsprechend seiner mechanischen Funktion angeordnet.

4. Die Leitgewebe. Je größer der Körper einer Pflanze wird und aus je mehr Zellen er sich zusammensetzt, vor allem aber je mehr Teile er aus dem Wasser oder aus dem Boden in den Luftraum streckt, umso mehr entsteht die Notwendigkeit, Stoffe schnell von einem Organe in ein anderes, etwa von den Wurzeln in die Blätter und umgekehrt, zu schaffen. Die Diffusionsbewegung durch die Querwände selbst langgestreckter Parenchymzellen genügt dazu vielfach nicht, auch wenn die Stoffbewegung durch Ausbildung von Tüpfelkanälen sehr erleichtert wird. So sind besondere, Leitungszwecken dienende Gewebearten, die Leitgewebe, entstanden mit sehr charakteristischen Zellelementen, die in der Hauptleitungsrichtung meist langgestreckt sind, oft vergrößerte Diffusionsflächen besitzen, ja meist zu eigenartigen Leitungskanälen (Fusionen) verschmelzen und stets zu einem zusammenhängenden Systeme verbunden sind, das die ganze Pflanze durchzieht. Bezeichnend für die Leitgewebe ist ferner der Mangel an Interzellularen.

Fig. 63. Querschnitt durch das Kollenchym von Cucurbita Pepo. Vergr. 240.

Fig. 64. Eine Kollenchymzelle in Seitenansicht. Vergr. 240.

a) Siebröhren. Durch offene Poren, die dem Transporte von Eiweißstoffen und Kohlehydraten zu dienen scheinen, werden die in Längsreihen angeordneten Glieder der Siebröhren[52] verbunden. Die quergerichteten oder steilen Endwände (manchmal auch die Seitenwände) jedes dieser übrigens langgestreckten, im Querschnitt polygonalen Glieder besitzen nämlich siebartig durchlöcherte Stellen, die von Plasmasträngen ausgefüllt werden. Man nennt diese Stellen Siebplatten (Fig. 65 A, B). Bei vielen Pflanzen, z. B. dem Kürbis (Fig. 65 A), ist die ganze Querwand eines Siebröhrengliedes eine einzige Siebplatte mit verhältnismäßig groben Poren; auf den Längswänden sind[S. 54] dagegen nur eng umgrenzte runde Stellen mit viel feineren Poren als Siebplatten ausgebildet (Fig. 65 C c*), da wo zwei Siebröhren seitlich aneinander grenzen. In anderen Fällen, z. B. auf den alsdann meist steilen Endwänden der Siebröhren, findet man dagegen mehrere solche durch nicht perforierte Membranteile getrennten tüpfelartigen Siebplatten (Fig. 66) mit meist sehr feinen punktförmigen Poren. Die Siebröhrenglieder, deren jedes einer Zelle entspricht, enthalten lebende, dünne plasmatische Wandbeläge mit je einem Zellkern, mit Leukoplasten und oft mit Stärkekörnern und als Zellsaft eine wäßrige alkalische, mehr oder weniger konzentrierte gerinnbare Flüssigkeit, die reich an Eiweißstoffen, oft auch an Kohlehydraten und anorganischen Salzen (Phosphaten) ist (Fig. 65 D). Die Siebröhrenwandungen sind fast stets unverholzt, bestehen aus Zellulose und sind durch den Inhalt elastisch gespannt. Im allgemeinen funktionieren die Siebröhren nur während einer Vegetationsperiode. Bevor sie untätig werden, überziehen sich ihre Siebplatten mit stark lichtbrechenden Kallusplatten (Fig. 65 C), die den Stoffaustausch zwischen den Siebröhrengliedern herabsetzen oder wohl ganz unterbrechen. Soll die Siebröhre in der nächsten Vegetationsperiode nochmals tätig sein, so werden diese Kallusplatten wieder gelöst.

Fig. 65. Teile von Siebröhren des Kürbis (Curcurbita Pepo) in Alkohol gehärtet. A Eine Siebplatte von oben gesehen. B und C Je zwei aufeinanderfolgende Siebröhrenglieder im Längsschnitt; s Geleitzellen, u Schleimstrang, pr plasmatischer Wandbelag, c Kallusplatte, c* kleine seitenständige Siebplatte mit Kallusbelag. D Die Inhaltsmassen von zwei Siebröhrengliedern nach Auflösung der Zellhäute mit Schwefelsäure. Vergr. 540. Nach STRASBURGER.

Fig. 66. A Grenze zweier Siebröhrenglieder vom Weinstock (Vitis) mit schräger, längsdurchschnittener Querwand. Vergr. 600. Nach DE BARY. B Eine solche Querwand in Flächenansicht mit den Siebplatten. Von ROTHERT schematisiert nach DE BARY.
[S. 55]

Die Kallusplatten bestehen aus Kallose, einem seiner chemischen Zusammensetzung nach noch unbekannten Körper, der sich durch seine Unlöslichkeit in Kupferoxydammoniak, aber seine Löslichkeit in 1%iger kalter Kalilauge auszeichnet. Sie färbt sich in Chlorzinkjodlösung rotbraun, glänzend blau mit Anilinblau und glänzend rot mit Korallin (Rosolsäure). — Kallose überzieht übrigens in dünnen Schichten auch schon die Leisten der Siebplatten zwischen den Poren, solange diese noch offen sind. Diese Schichten werden allmählich dicker, die Poren mehr und mehr verengt und schließlich ganz verstopft.

b) Gefäße. Besondere und zwar tote Zellarten, die meist langgestreckt röhrenförmig sind, rundlichen oder polygonalen Querschnitt haben und in Längsreihen, entsprechend der Hauptleitungsrichtung, angeordnet sind, mit sehr charakteristischen und auffälligen Verdickungen in den meist verholzten Wänden dienen der Leitung, manchmal auch der Speicherung des Wassers in der Pflanze (Gefäße). Die Gefäße enthalten dementsprechend, solange sie tätig sind, Wasser, außerdem aber oft auch begrenzte Mengen Luft. Man teilt sie ein in Tracheïden und Tracheen. Die Tracheïden sind Einzelzellen, die mit eigenartig getüpfelten Zellhäuten aneinander grenzen, meist zugespitzte Enden und in der Regel kleinen Querdurchmesser (Fig. 70 B) besitzen; sie dienen oft zugleich als Festigungszellen, z. B. im Stamme der Nadelhölzer. Die Tracheen dagegen sind verhältnismäßig weite oder enge Membranröhren, die aus Längsreihen vieler Zellen (ihren Gliedern) durch Auflösung der Endwände entstanden sind. Die Endwände werden dabei, wenn sie quer stehen, meist bis auf einen schmalen Rand aufgelöst, der als ringförmige Membranleiste stehen bleibt und verdickt wird (Fig. 67 C bei s, Fig. 69 I bei q und q′); schräge Endwände sind dagegen meist nicht von einem einzigen runden, sondern von mehreren, übereinanderliegenden, spaltenförmigen oder elliptischen Löchern (leiterförmige Perforation, Fig. 69 II; 171 tg) durchbrochen. Einige der Endwände freilich sind nicht durchbrochen, sondern bloß mit Tüpfeln versehen. Infolgedessen haben die Tracheen eine begrenzte Länge.

Fig. 67. Teile von Tracheïden und von einer Trachee. A Ring- und Schraubentracheïde. B Schraubentracheïde. C Netztrachee halb aufgeschnitten, bei s eine der beiden durchlöcherten Querwände. Vergr. 240. Nach H. SCHENCK.

Fig. 68. Teil eines Längsschnittes durch drei Schraubengefäße und eine Reihe von Parenchymzellen des Kürbis (Curcurbita Pepo). Vergr. 560. Nach ROTHERT.

Einzelne Tracheen können zwar, im besonderen bei den kletternden Holzgewächsen, den Lianen, einige Meter lang sein. Auch bei unseren Eichen sind 2 m lange Tracheen noch sehr zahlreich. Im allgemeinen beträgt aber ihre Länge weniger als 1 m, nämlich meist nur gegen 10 cm. Wie die längsten, so sind auch die weitesten Tracheen bei den Kletterpflanzen zu finden; ihr Durchmesser kann hier 0,7 mm erreichen, während er bei unseren Eichen im Mittel 0,25, unserer Linde 0,06 mm beträgt.

Die Bezeichnungsweise der wasserleitenden Elemente ist in der Literatur leider recht verschiedenartig. Meist wird unterschieden zwischen Tracheïden und Tracheen oder[S. 56] Gefäßen. DE BARY dagegen nannte alle Elemente Tracheen und unterschied zwischen Tracheïden und Gefäßen. Am zweckmäßigsten scheint der Vorschlag ROTHERTs, dem wir gefolgt sind, als Sammelbegriff von Gefäßen zu reden und die Gefäße in Tracheïden und Tracheen einzuteilen.

Die Wandverdickungen in vielen Gefäßen sind auf schmale Leisten (Fig. 67 u. 68) in den sonst wenig verdickten Zellwänden beschränkt. Diese Leisten können isolierte Ringe, zusammenhängende Schraubenbänder oder ein Netzwerk mit großen queren Maschen bilden (Fig. 67, 68); man unterscheidet danach zwischen Ring-, Schrauben- und Netztracheïden oder -tracheen. In anderen Gefäßen umfassen die Verdickungen den größeren Teil der Zellmembranen; alsdann bleiben aber zahlreiche kreisförmige, polygonale oder in querer Richtung mehr oder weniger gestreckte elliptische oder spaltenförmige Tüpfel zwischen den verdickten Teilen ausgespart (Fig. 69, 70): Tüpfelgefäße. Stehen an den Seitenwänden quergestreckte Tüpfel regelmäßig in geraden Reihen übereinander, so wird das Gefäß als Treppen- oder Leitergefäß bezeichnet (Fig. 69 II, 70 A). Zwischen sämtlichen Gefäßformen gibt es Übergänge.

Die Tüpfel sind in allen Tüpfelgefäßen zweiseitig oder einseitig behöft (Hoftüpfel). Hoftüpfel heißt ein Tüpfel, dessen Kanal sich nach der Schließhaut hin trichterartig erweitert (Fig. 71 C). Sehr häufig sind die Hoftüpfel in der Flächenansicht kreisförmig; alsdann sieht man in ihrer Mitte einen kleinen konzentrischen Kreis (Fig. 71 A). Der kleinere innere Kreis ist die enge Mündungsstelle des Tüpfelkanals in den Zellraum, der große äußere Kreis (der „Hof“) seine weiteste Stelle, womit er an die Schließhaut grenzt. Zwischen beiden Kreisen überwölben die Verdickungsschichten der Membran die Schließhaut als Tüpfelwandung. Die Schließhäute sind in der Mitte oft zu dem Torus verdickt (Fig. 71 C), vermögen sich nach der einen oder anderen Seite vorzuwölben und mit den Tori die engen Ausgänge der Tüpfel auf einer Seite nach Art von Klappenventilen zu verschließen (Fig. 71 B, t). Die Hoftüpfel lassen infolge ihrer großen Schließhäute sehr rege Flüssigkeits-(Wasser)bewegungen von einem Zellraum in den anderen zu, ohne daß die toten Zellen auf die notwendige Festigkeit ihrer Membranen zu verzichten brauchten, die eben durch die einem Gewölbe ähnliche Tüpfelwandung gewährleistet wird.

Fig. 69. A Schemata von Tracheen in medianem Längsschnitt. I. Weite Trachee mit kleinen elliptischen Hoftüpfeln und mit einfacher Perforation der Querwände q q. Die Hinterwand der Trachee ist im oberen Teil der Figur weggeschnitten. II. Enge Treppentrachee mit leiterförmiger Perforation der Querwände q. B Die Querwände beider Tracheen, von der Fläche gesehen. Nach ROTHERT.
Die Hoftüpfel sind, wie es die Fig. 71 C zeigt, zweiseitig behöft, wenn sie zwischen zwei wasserleitenden Elementen ausgebildet sind. Sie sind einseitig behöft, wenn sie die Zellwand eines wasserleitenden Elementes durchsetzen, das an eine lebende Zelle grenzt. In diesem Falle erweitert sich[S. 57] der Tüpfelkanal nämlich bloß von dem wasserleitenden Elemente aus nach der Schließhaut hin und hat keinen Torus in der Schließhaut; auf der anderen Seite der Schließhaut dagegen, also in den Wandschichten der lebenden Zelle, ist ein gleich weiter (einfacher) Tüpfelkanal ausgebildet.

Auch die Tüpfel in den Endwänden der Tracheen und Tracheïden sind stets Hoftüpfel. In den Tracheen sind es ihre Schließhäute, die aufgelöst werden (vgl. Fig. 69 A I und II).

Auch in den Ring- und Schraubengefäßen können übrigens die Verdickungsleisten gelegentlich den Wänden von Hoftüpfeln gleichen[53], und zwar dadurch, daß sie T-förmigen Querschnitt haben und mit den verschmälerten Kanten der Gefäßwandung angefügt sind (Fig. 68).

Die dünnen Membranstellen zwischen den Leisten entsprechen alsdann den Schließhäuten von Hoftüpfeln; manchmal sind sie sogar, wenn sie zwei wasserleitende Elemente trennen, wie diese Schließhäute, in ihrer Mitte etwas stärker, als Tori, verdickt. Bei der Anfertigung von Schnitten lösen sich die fast stets verholzten schraubenförmigen Verdickungsbänder oft leicht von den unverdickten (und nicht immer verholzten) Gefäßwandungen ab und werden weithin aus den Gefäßen herausgerissen. Diese Erscheinung findet aber weder in der Befestigungsweise der Bänder noch in der chemischen Beschaffenheit der Schraubengefäßwände eine hinreichende Erklärung.

Fig. 70. A Unteres Drittel einer Treppentracheïde aus dem Rhizom des Adlerfarns (Pteridium aquilinum). t Die quergestreckten Tüpfel an den Seitenwänden, q die leiterförmig getüpfelte Endfläche. Vergr. 95. Nach DE BARY. B Eine Tracheïde mit runden Hoftüpfeln. Vergr. 100. Nach STRASBURGER.

Fig. 71. Tracheïden aus dem Holze der Kiefer (Pinus silvestris). A Radialer Längsschnitt mit Hoftüpfel in Flächenansicht. B Tangentialer Längsschnitt mit Hoftüpfel im Querschnitt, t der Torus. C Querschnitt durch eine Tracheïde, m Mittellamelle, m* ein Zwickel in dieser, i das Grenzhäutchen. Vergr. 540. Nach STRASBURGER.

Nur die mit ring- oder schraubenförmigen Verdickungsleisten versehenen Gefäße sind noch streckungsfähig und dehnbar; daher werden nur solche in wachsenden Pflanzenteilen ausgebildet.

Die Wandverdickungen erhöhen die mechanische Festigkeit der wasserleitenden Elemente, indem sie es verhindern, daß die benachbarten lebenden Zellen sie zusammendrücken. Der lebende Inhalt der Gefäße wird, während die Zellmembranen sich verdicken, immer ärmer; schließlich schwindet er, in den Tracheen nach Durchbrechung der Querwände, ganz.

Leitbündelgewebesystem. Die Siebröhren treten fast nie für sich allein auf, sondern sind meist mit Leitparenchym zu Strängen oder Bündeln (Siebsträngen) verbunden, die die ganze Pflanze durchziehen. Gleiches gilt für[S. 58] die Tracheïden und Tracheen (Gefäßstränge); Tracheïden finden sich freilich auch einzeln oder in kleineren Gruppen nicht selten als Wasserspeicher im Parenchym zerstreut (Speichertracheïden).

Im primären Gewebe verbinden sich Sieb- und Gefäßstränge meist zu gemeinsamen Strängen oder Bündeln, vollständigen Leitbündeln, die meist parallel zur Längsachse eines Organes verlaufen, durch Querzweige zu einem Netzwerk verbunden und so auffällig sind, daß man für dieses Strangsystem den Namen Leitbündelgewebesystem geprägt hat. Darin sind also die Elemente der Wasserleitung mit denen der Leitung organischer Stoffe verbunden, so daß das Wasser und diese Stoffe auf nahe benachbarten Wegen, wenn auch oft in entgegengesetzter Richtung geleitet werden. Dieses Gewebesystem kann primären oder sekundären Ursprungs sein. In jedem vollständigen Leitbündel, das sich durch seine engen Elemente und den Mangel an Interzellularen schon bei schwächster Vergrößerung von dem übrigen weniger dichten Gewebe abhebt, ja manchmal sogar mit bloßem Auge sichtbar ist, z. B. in den durchscheinenden Stengeln von Impatiens parviflora, lassen sich also Gewebestränge zweierlei Art unterscheiden: Gefäßstränge bilden den Gefäßteil oder das Xylem, und Siebstränge bilden den Siebteil oder das Phloëm. Xylem und Phloëm können in den Bündeln verschieden angeordnet sein; infolgedessen sind auch die Querschnittsbilder der Bündel recht verschieden (vgl. S. 85 ff.).

Für das vollständige Leitbündel und seine Teile werden noch andere Namen in der Literatur gebraucht. Statt Leitbündel sagt man auch Gefäßbündel, Fibrovasalbündel oder Mestom, statt Gefäßteil Holzteil, Vasalteil oder Hadrom, statt Siebteil Bastteil, Kribralteil oder Leptom.

Fig. 72. Stück einer Milchröhre der Asclepiadacee Ceropegia. Vergr. 150. Nach STRASBURGER.
Sieb- oder Gefäßstränge kommen aber nicht selten auch für sich allein vor. Solche Sieb- oder Gefäßstränge kann man als unvollständige Leitbündel bezeichnen. Sie sind besonders im sekundären Dauergewebe weit verbreitet, und zwar Gefäßstränge im Holz, Siebstränge im Bast (vgl. S. 133, 136).

5. Sekretzellen und Sekretgewebe. 1. Einzelzellen. In den verschiedensten Geweben findet man besonders häufig Sekretzellen, einzeln für sich oder oft in längs verlaufenden Reihen (so z. B. bei Liliaceen, Amaryllidaceen, Commelinaceen). Sie sind isodiametrisch oder schlauchförmig (Schläuche) und unterscheiden sich von den übrigen Zellen vornehmlich durch ihren Inhalt. In dem oft stark geschwundenen, nicht selten schließlich abgestorbenen Protoplasten liegen als Endprodukte des Stoffwechsels sehr große Mengen Sekrete verschiedenster Art, die als Schutzstoffe ökologische Bedeutung haben können. Als solche Sekrete sind besonders verbreitet: Schleime, Gummi, ätherische Öle, Harze, Gummiharze, Gerbstoffe, Alkaloide oder Oxalatkristalle (Fig. 22). Die Wandungen dieser Zellen sind oft verkorkt.

Zu den Sekretzellen gehören auch die ungegliederten Milchröhren, die als Sekrete Milchsäfte enthalten. Es sind reich verzweigte Schläuche ohne alle Querwände, Röhren, die eine meist unverdickte, glatte, elastische Zellulosewand (Fig. 72), einen lebenden Wandbelag aus Plasma mit zahlreichen Zellkernen, manchmal auch mit Stärkekörnern (bei vielen Euphorbien von knochenförmiger Gestalt) besitzen[54] und als Zellsaft eine milchige, meist weiße, wäßrige Flüssigkeit enthalten, die an der Luft rasch gerinnt. Der Milchsaft hat ökologische Bedeutung; er dient zum Wundverschluß und als[S. 59] Schutzmittel gegen Tierfraß. Leitfunktion haben die Milchröhren dagegen nicht.

In dem Milchsaft kommen gelöst vor: Gerbstoffe, Glykoside, manchmal giftige Alkaloide und besonders Kalkmalat, ferner bei Ficus Carica und Carica Papaya auch peptonisierende Enzyme; weiter als Tröpfchen in Emulsion: Gummiharze, d. h. Gemenge von Gummi und Harz, Kautschuk (C25H40), Guttapercha, Fett und Wachs; als feste Bestandteile: vielfach Proteïnkörner.

Solche Milchröhren findet man bei vielen Euphorbiaceen (z. B. Euphorbia), Moraceen, Apocynaceen und Asclepiadaceen. Sie gehen aus Zellen hervor, die schon in der Keimpflanze kenntlich sind und mit der ganzen Pflanze weiterwachsen, sich fort und fort verzweigen, in alle ihre Glieder eindringen und so viele Meter lang werden können.

2. Zellfusionen. Mehrere Sekretzellen können auch durch Auflösung der trennenden Querwände zu einem geräumigeren Sekretbehälter verschmelzen. Am auffälligsten ist das der Fall bei den gegliederten Milchröhren oder Milchgefäßen. Sie sehen ganz ähnlich aus und besitzen auch ganz entsprechenden Inhalt wie die ungegliederten Milchröhren, unterscheiden sich von ihnen nur dadurch, daß sie aus Zellverschmelzungen hervorgehen und meist zu einem Netzwerk verbundene Schläuche sind (Fig. 73). Infolgedessen findet man in ihnen manchmal Reste von Querwänden.

Fig. 73. Tangentialer Längsschnitt aus der Peripherie der Wurzel des Löwenzahns (Taraxacum), die netzförmig verbundenen Milchgefäße zeigend. Vergr. 240.

Fig. 74. Lysigener Ölbehälter im Querschnitt des Blattes von Dictamnus Fraxinella. A Jung. B Nach Auflösung der Zellwände fertig ausgebildet. ROTHERT frei nach RAUTER.

Wie die Milchröhren, so sind auch die Milchgefäße auf bestimmte Pflanzenfamilien beschränkt, so auf gewisse Euphorbiaceen (z. B. bei dem wichtigsten Kautschukbaum Hevea), die Papaveraceen mit Papaver und dem durch orangerote Färbung seines Milchsaftes ausgezeichneten Chelidonium, ferner auf die Campanulaceen und die Cichorieen unter den Kompositen, etwa mit den Gattungen Cichorium, Taraxacum, Lactuca, Scorzonera, Hieracium, Tragopogon. Ihre Funktionen entsprechen denen der ungegliederten Milchröhren.

Den Milchgefäßen in vieler Beziehung ähnlich sind die Schleimröhren, die bei vielen Monokotylen vorkommen. Ihr Schleimsaft besteht aus Eiweiß, Stärke, Glykose, Gerbstoffen und anorganischen Stoffen.

3. Lysigene Interzellularräume. Häufig entstehen ferner Sekretbehälter auch lysigen, d. h. durch Auflösung der ganzen Sekretzellen (Fig. 74)[S. 60] (lysigene Sekretbehälter). Sie stellen rundliche Gebilde, unregelmäßige Hohlräume und schlauchförmige Gänge dar. Sie gehen aus Zellgruppen hervor, in denen die Sekrete entstanden sind und deren Wände allmählich aufgelöst wurden. Solchen Ursprung haben unter anderem die mit ätherischem Öl gefüllten Sekretbehälter der Orangen, Zitronen und anderer Rutaceen sowie vieler Myrtaceen.

6. Drüsenzellen und Drüsengewebe. Außer Sekretzellen findet man, ebenfalls einzeln oder auch zu Gruppen vereint, in der Epidermis, im Parenchym oder in anderen Gewebearten oft Drüsenzellen, d. h. Zellen, die Sekrete, also meist Endprodukte des Stoffwechsels, aus ihren Protoplasten durch die Zellwände nach außen, aus dem Pflanzenkörper oder in Interzellularen, ausscheiden. Auch die Drüsenzellen, die immer lebend sind, gleichen den Parenchymzellen, sind aber wie die Meristemzellen meist mit viel Plasma und mit großen Zellkernen ausgestattet. Die ausgeschiedenen Stoffe haben oft eine ökologische Bedeutung. Gruppen von lückenlos verbundenen Drüsenzellen, die eine Zellschicht bilden, nennt man Drüsenepithelien.

Besonders häufig findet man in der Epidermis Drüsenepithelien oder einzelne Drüsenzellen. Sie sind oft von einer porösen Kutikula überzogen, oder eine Kutikula fehlt ganz. Hier kommen auch Drüsenhaare vor, so auch Köpfchenhaare, deren als Köpfchen ausgebildete Endzelle (Fig. 75) die Drüsenzelle ist. Andere solche Haare sind schuppenförmig gestaltet (Fig. 76); auch Drüsenzotten (Fig. 56) kommen vor. Das Sekret besteht sehr oft aus harzigen Stoffen; in diesem Falle tritt es zunächst zwischen der Außenwand der Drüsenzelle und der Kutikula auf, die Kutikula emporhebend und schließlich zersprengend. Ähnliches gilt für andere klebrige Stoffe und Schleim.

Fig. 75. Drüsenhaar vom Blattstiel der Primula sinensis, oben das Sekret. Vergr. 142. Nach DE BARY.

Fig. 76. Gelbe Drüsenschuppen von den weiblichen Blütenständen des Hopfens im senkrechten Durchschnitt. A Vor Beginn der Sekretbildung. B Die Kutikula durch das Sekret emporgehoben, das Sekret durch Alkohol entfernt. Vergr. 142. Nach DE BARY.

Fig. 77. Sitzende Digestionsdrüse der Blattoberseite von Pinguicula vulgaris. A Im Längsschnitt. B In Aufsicht. ROTHERT frei nach FENNER.

Fig. 78. Schizogener Ölbehälter im Blattquerschnitt von Hypericum perforatum. s Das Drüsenepithel. Nach HABERLANDT.

Nach den Ausscheidungsprodukten, die recht verschiedene ökologische Bedeutung haben können, unterscheidet man unter den epidermalen Drüsen: Schleim-, Öl-, Harz-, Digestions- (Fig. 77), Salzdrüsen, Wasserdrüsen (Hydathoden) und Nektarien[55]. Die letztgenannten scheiden zuckerreiche Sekrete aus, die Insekten anlocken; sie finden sich als Drüsenflächen oder Drüsenhaare vor allem innerhalb der Blüten (nuptiale Nektarien), oder außerhalb (extranuptiale Nektarien, vgl. Fig. 141 n) und haben recht verschiedenen Bau (vgl. auch S. 99).

[S. 61]

Die im Parenchym oder in anderem Gewebe eingeschlossenen Drüsenzellen oder Drüsenepithelien grenzen stets an rundliche oder unregelmäßig begrenzte Interzellularräume oder an gang- und röhrenförmige, unverzweigte oder verzweigte Interzellularkanäle, die manchmal die ganze Pflanze als kommunizierende Röhren durchziehen können. Diese Interzellularen, die durch Auseinanderweichen der Drüsenzellen, also schizogen, entstehen, sind es, in die die Sekrete ausgeschieden werden; sie bilden die schizogenen Sekretbehälter (Fig. 78). Ihr Inhalt besteht aus ätherischen Ölen, Harzen, Gummi, oder Schleim; dementsprechend unterscheidet man zwischen Öl-, Harz- (Fig. 133 A, h), Gummi- und Schleimgängen oder -kanälen. Solche Harzkanäle finden sich bei vielen Coniferen, Ölgänge z. B. bei den Umbelliferen, Schleim- und Gummigänge bei den Cycadeen und Araliaceen (wie dem Epheu). Runde oder längliche schizogene Höhlungen (Lücken) mit ätherischen Ölen kommen bei Hypericum-Arten vor (Fig. 78).

Übrigens gibt es auch schizolysigene Sekretbehälter.

Dritter Abschnitt. Organlehre (Organographie)[56].
Die Organismen, die wir zum Pflanzenreiche rechnen, sind sehr verschieden gestaltet und gegliedert. Teils sind sie zeitlebens einzellig, teils sind sie vielzellig. Einzellige wie Vielzellige können sehr einfache und regelmäßige oder unregelmäßige Umrißformen haben und äußerlich ganz ungegliedert sein oder einen durch Auszweigungen mannigfaltigster Art reich und mehr oder weniger symmetrisch gegliederten Körper besitzen.

I. Symmetrieverhältnisse. Die ganze Gestalt eines ungegliederten oder irgendwie gegliederten Organismus und ebenso die Form und die innere Ausbildung seiner Teile wird beherrscht durch die Eigenart der Symmetrieverhältnisse, d. h. durch die mehr oder weniger gesetzmäßige Verteilung der organischen Massen, die das Lebewesen oder seine Organe zusammensetzen. Die Symmetrieverhältnisse stehen wie fast alle Eigenschaften organischer Formen in engster Beziehung zu der Lebensweise des Organismus und zu den Funktionen seiner Organe, vor allem der Wuchsrichtung der Pflanze und ihrer Glieder. Meist entspricht deshalb den äußeren Symmetrieverhältnissen eines Pflanzenteiles auch die Symmetrie seines inneren Baues.

Von wenigen, sehr einfachen Pflanzen abgesehen, deren Symmetrieverhältnisse hier unerörtert bleiben sollen, finden wir am Körper pflanzlicher Organismen und jedem seiner Teile fast stets einen polaren Gegensatz seiner durch die Längsachse verbundenen Körperenden, seiner Spitze und Basis ausgebildet. Ein solcher Unterschied kommt vor sowohl bei frei beweglichen Formen, bei denen die Fortbewegungsrichtung meist durch die polare Ausbildung des Körpers bestimmt wird, als auch bei festgewachsenen Arten, bei denen der Körper mit dem unteren Pole, der Basis, am Substrate festgeheftet ist.

Jeder Schnitt parallel zur Längsachse, gleichgültig ob er diese in sich aufnimmt oder nicht, ist ein Längsschnitt durch den Pflanzenteil; die rechtwinklig zur Längsachse geführten Schnitte sind Querschnitte. Ein polar gebauter Organismus oder Pflanzenteil, der rings um seine Längsachse annähernd gleich gebaut ist, wird als radiär, polysymmetrisch oder aktinomorph bezeichnet (Fig. 529 A). Er läßt sich durch mehrere, in der Längsachse sich schneidende Längsschnitte in jeweils zwei spiegelbildlich ungefähr[S. 62] gleiche Teile zerlegen; er hat also mehrere Symmetrieebenen. An solchen Körpern heißen Längsschnitte radial, wenn sie durch die Längsachse gehen (wie es z. B. bei seinen Symmetrieebenen der Fall ist), tangential, wenn sie senkrecht auf einem Radius stehen und nicht durch die Längsachse hindurch gehen. Sind bloß zwei aufeinander senkrecht stehende Symmetrieebenen vorhanden, die sich ebenfalls in der Längsachse schneiden, so spricht man von bilateralen oder bisymmetrischen Gebilden (Fig. 107). Gibt es schließlich bloß eine einzige Symmetrieebene, so liegt ein dorsiventraler, monosymmetrischer oder zygomorpher Körper vor, bei dem nur die beiden Flanken einander entsprechen, Rücken- und Bauchseite aber verschieden sind (Fig. 529 B); die Symmetrieebene solcher Körper nennt man ihre Medianebene oder Mediane. Pflanzen oder Pflanzenteile, die in der Lotrichtung nach aufwärts oder abwärts (orthotrop) wachsen, sind meist radiär oder wohl auch bilateral symmetrisch; wenn sie dagegen senkrecht oder schräg zur Lotlinie (plagiotrop) wachsen, so sind sie oft dorsiventral. Schließlich gibt es auch ganz asymmetrische organische Gebilde, bei denen sich der Körper überhaupt nicht in spiegelbildliche Hälften teilen läßt. Manche sonst dorsiventrale Gebilde, wie z. B. manche Blätter, werden dadurch asymmetrisch, daß die eine Hälfte sich anders ausbildet als die andere. Das ist z. B. bei den Blättern von Begonia der Fall, weshalb man diese Pflanzen auch „Schiefblätter“ nennt, ferner in geringerem Grade u. a. bei den Blättern der Ulme.

Die Symmetrieverhältnisse sind für das Verständnis der pflanzlichen Gestaltungsverhältnisse von sehr großer Bedeutung. Oft werden die besonderen Symmetrieverhältnisse der Seitenglieder sofort verständlich, wenn man den Aufbau der ganzen Pflanze in Betracht zieht. So sind die asymmetrischen Blätter, z. B. bei den Begonien[57], die Folge der dorsiventralen Symmetrie der ganzen, meist mehr oder weniger plagiotropen Pflanze oder, wie bei der Ulme und vielen anderen Gewächsen, ihrer Zweige.

II. Bedeutung der äußeren Gliederung für den Organismus. Bau und Gliederung zeigen meist enge Beziehungen zu den Lebensbedürfnissen und zur Lebensweise der Einzelformen. Äußere Gliederung ist meist gerade so wie die innere der Ausdruck einer Arbeitsteilung, die zwischen den Teilen einer Zelle oder eines vielzelligen Körpers eingetreten ist. Die äußeren Glieder sind nämlich meist zu Organen mit bestimmten Lebensfunktionen geworden. Der phylogenetische Fortschritt von einfacheren zu reicher gegliederten organischen Formen besteht zum guten Teile in der Zunahme dieser Arbeitsteilung.

III. Hauptgruppen von Organen. Jeder Organismus betätigt sich in doppelter Weise: Er muß sich ernähren, um sich selbst zu behaupten; und er muß sich fortpflanzen, um die Art zu erhalten, da sein Leben begrenzt ist. Diesen beiden fundamentalen Lebensregungen dient der Körper. Nur bei primitiven Pflanzen ist er in gleicher Weise mit seiner ganzen Masse beiden Aufgaben dienstbar; sonst besorgen bestimmte Teile die Ernährungsvorgänge, andere die Fortpflanzung. So finden wir meist eine scharfe Arbeitsteilung zwischen den Vegetationsorganen und den Fortpflanzungsorganen, die wie in ihren Funktionen, so auch in ihrem äußeren und inneren Bau fundamental verschieden sind. Beide Gruppen von Organen müssen wir getrennt betrachten.

I. Vegetationsorgane.
Die höchste Gliederung, die die Pflanze in ihren Vegetationsorganen erfahren hat, ist die Gliederung in Wurzeln, Stengel und Laubblätter. Stengel und Laubblätter faßt man auch als Sproß zusammen. Einen aus Sproß und Wurzeln bestehenden Körper nennen wir Kormus. Die Gewächse[S. 63] solchen Baues bezeichnet man wohl als Kormophyten; dazu gehören die farnähnlichen Gewächse oder Pteridophyten und die aus ihnen hervorgegangenen, noch reicher gegliederten Samenpflanzen.

Die Kormophyten sind phylogenetisch entstanden aus einfacher organisierten Gewächsen, bei denen der Körper noch nicht eine so weitgehende Gliederung erfahren hat: bei denen die Wurzeln und echten Blätter noch fehlen, wenn bei manchen auch blattähnliche Zweige vorkommen können. Solche Gebilde bis herab zu ganz einfachen, völlig ungegliederten Pflanzenkörpern hat man Thalli genannt. Gewächse, die einen Thallus besitzen, kann man als thallöse Pflanzen den Kormophyten gegenüberstellen. Einen Thallus haben die Algen, Pilze, Flechten und alle Moose.

Mit den thallösen Pflanzen darf man die Thallophyten nicht verwechseln. Alle thallösen Pflanzen haben zwar einen Thallus, aber nicht alle sind Thallophyten. Unter diesem Namen faßt die Systematik nur die Algen, Pilze und Flechten zusammen.

Fig. 79. Die Kieselalge Pinnularia viridis in zwei Ansichten. A Die Schalenansicht, B die Gürtelbandansicht. Vergr. 540. Nach STRASBURGER.

Fig. 80. Bakterien des Zahnschleims. a Leptothrix buccalis, bei a* nach Jodbehandlung, b Mikrokokken, c Spirochaete dentium nach Jodbehandlung, d Spirillum sputigenum. Vergr. 800. Nach STRASBURGER.

A. Der Thallus[58].
a) Algen, Pilze, Flechten. 1. Einfachste (Kugel-)Formen. Äußerlich ganz ungegliedert ist bloß eine Reihe mikroskopisch kleiner einzelliger oder vielzelliger Gewächse. Die einfachste Form, die ein Organismus annehmen kann, ist die Kugel. Aus solchen Kugelzellen bestehen z. B. manche Algen, die an feuchten Mauern grüne Überzüge bilden (Fig. 35), und viele Bakterien (Fig. 80 b), die bei weitem kleinsten Organismen, die wir kennen.

2. Relative Oberflächenvergrößerung. Ausbildung einer Längsachse. Die Kugel hat von allen geometrischen Figuren gleichen Rauminhaltes die kleinste Oberfläche; und zwar ist die Oberfläche der Kugel um so kleiner im Verhältnis zu ihrem Volumen, je größer dieses wird, und umgekehrt (gleiches gilt übrigens auch für alle anders geformten Gebilde). Bei den winzig kleinen Bakterienzellen ist also die Oberfläche im Verhältnis zu ihrem Rauminhalt ganz außerordentlich groß; ja man darf die auffallend geringe Größe dieser Organismen in dieser Hinsicht wohl geradezu als Anpassung an ihre Lebensweise bezeichnen. Alle Abweichungen von der Kugelgestalt sind mit einer mehr oder weniger ausgiebigen relativen Vergrößerung der Oberfläche verbunden. Namentlich wenn das Körpervolumen zunimmt, im Verhältnis dazu seine Oberfläche also sich verringert, wird meist auf diese Weise die Oberfläche des Körpers vergrößert. Alsdann finden wir Zylinder-, Stäbchen-, Faden-,[S. 64] Band- und Scheibenformen, sowie schließlich äußerlich gegliederte, mit Fortsätzen ausgestattete Körper, also zumeist Gebilde, die bereits eine deutliche Längsachse erkennen lassen. Die freie Oberfläche des Körpers nämlich ist bei jeder Pflanze von allergrößter Bedeutung für die Aufnahme der zur Ernährung unbedingt notwendigen flüssigen und gasförmigen Stoffe aus der Außenwelt. So ist eben die Oberflächenvergrößerung das wichtigste Prinzip der Oberflächendifferenzierung.

Von ellipsoidischer Form sind die einzelligen Individuen der Bierhefe (vgl. Fig. 20); scheibenförmig oder zylindrisch sind die Zellen vieler Algen, z. B. vieler Diatomeen-Arten. In dieser Algengruppe gibt es auch spindel-, schiff- (Fig. 79), helm-, fächer-, faden-, band- und kettenförmige Gebilde. Stäbchen- und schraubenförmige Gestalten finden wir auch bei den Bakterien (Fig. 80 a, c, d). Die Bakterienzellen besitzen natürlich auch dann, wenn sie nicht Kugelgestalt haben, eben infolge ihrer außerordentlichen Kleinheit gegenüber ähnlich gestalteten Zellen anderer Organismen eine ungewöhnlich große freie Oberfläche.

Solche Lebewesen können mit Gallerte oder Schleim auf einer Unterlage festsitzen oder auch frei in Flüssigkeiten, vor allem in Wasser, flottieren. Die flottierenden Organismen des Wassers, der Binnengewässer sowohl wie der Meere, bezeichnet man als Plankton im Gegensatze zu den Wasserorganismen, die festgeheftet sind, dem Benthos. Die Planktonflora, die sehr reich an eigenartigen Formen ist, enthält fast lauter solche Gestalten, wie wir eben genannt haben. Sie können mit aktivem Bewegungsvermögen begabt sein (Schwimmer). Der Fortbewegung dienen alsdann in der Regel besondere Organe: sehr häufig fadenförmige kontraktile Geißeln oder Zilien, die Fortsätze des Plasmakörpers sind. Ihr Besitz erlaubt es solchen Planktonten, durch Reizbewegungen die Stellen mit den günstigsten Ernährungsbedingungen aufzusuchen, ungünstige Stellen aber zu fliehen. Andere Planktonorganismen schweben dagegen ohne eigenes Bewegungsvermögen im Wasser (Schweber); viele von ihnen und andere Planktonten besitzen besondere Schwebeeinrichtungen. Die Oberflächen ihrer Körper sind durch lange Stacheln, Leisten, fallschirmartige Platten außerordentlich vergrößert (Fig. 319, 321, 322); dadurch erhöht sich der Reibungswiderstand des Körpers am Wasser bedeutend, und das Sinken wird erschwert[59].

Haben alle diese einfach organisierten Pflanzen starre Körperformen, so gibt es auch niedere Pflanzen, die ständig ihre Gestalt wechseln, also ohne feste Umrisse sind, z. B. die Myxamöben und die Plasmodien der Schleimpilze.

3. Ausbildung des polaren Gegensatzes. Als nächste Stufe der fortschreitenden Gestaltung kann bei Formen mit Längsachse jene gelten, bei der sich ein Unterschied zwischen Basis und Spitze oder Scheitel einstellt. Bei freibeweglichen Formen ist alsdann der eine Pol oft Träger der Fortbewegungsorgane (Geißeln). Bei festgewachsenen dient er meist als Haft- oder Befestigungsorgan (als kreisrunde Haftscheibe oder als krallen- oder fingerförmig verzweigte Haftlappen usw.) der Anheftung, während das Wachstum sich auf eine eng umgrenzte Stelle des Körpers, einen Vegetationspunkt, beschränken kann, nämlich bald auf eine Zone zwischen Basis und Spitze (interkalares Wachstum, interkalarer Vegetationspunkt), bald mehr und mehr auf den Scheitel (apikales oder Spitzenwachstum, apikaler Vegetationspunkt). Ein Keimling der grünen Meeresalge Ulva Lactuca mag für den letzteren Fall als Beispiel dienen (Fig. 81).

Fig. 81. Keimling von Ulva Lactuca. Oben der Scheitel, unten die Basis. Vergr. 220. Nach STRASBURGER.
4. Abplattung. Bei vielen Algen und Flechten ist der Thallus bandförmig oder scheibenförmig abgeplattet (Fig. 83). Dadurch wird die freie Oberfläche, worauf es der Pflanze ankommt, weiter wesentlich vergrößert. Deshalb darf man diese Ausbildung wohl als eine Anpassung an die Ernährungsverhältnisse[S. 65] dieser Organismen ansehen. Sie bauen sich nämlich ihre organische Substanz aus dem Kohlenstoffe der Kohlensäure auf, die sie zerlegen. Diese Zerlegung und Assimilation aber erfolgt wie bei allen Pflanzen, die Chlorophyll enthalten, nur am Lichte. Soll sie also in größerem Maße stattfinden, so müssen möglichst viele Chlorophyllkörner dem Lichte ausgesetzt werden. Das aber wird eben bei voluminösen Körpern vielfach durch Abflachung erreicht.

5. Ausbildung von Dorsiventralität. Die Mehrzahl der bisher besprochenen Formen ist radiär oder bilateral symmetrisch. Bei manchen, namentlich solchen, die mit ihrem Thallus auf einer Unterlage sich ausbreiten, also plagiotrop wachsen (z. B. bei vielen Flechten), ist der Körper aber auch dorsiventral ausgebildet. Dorsiventrale Symmetrie ist namentlich solchen Formen eigentümlich, deren Oberseite mehr Licht erhält als die Unterseite. Alsdann ist vor allem die obere Seite für die Assimilation eingerichtet.

6. Ausbildung von Verzweigungen. Noch höher organisiert sind Fäden, Bänder und Scheiben, die durch Fortsätze verzweigt sind. So ist die Mehrzahl der Thalli bei Algen, Pilzen und Moosen gestaltet. Durch die Verzweigung wird die freie Oberfläche meist noch weiter bedeutend vergrößert und zugleich eine bessere Raumausnutzung ermöglicht. Es können dadurch schließlich busch-, strauch- und baumförmige Thalli entstehen, bei den Algen vielfach mit Zweigen sehr großer Biegsamkeit und Geschmeidigkeit, die dem bewegten Wasser keinen Widerstand entgegensetzen, sondern in ihm fluten.

Fig. 82. a Schema der dichotomischen, b der seitlichen, razemösen Verzweigung. K Keimlingsachse, H Hauptachse, 1, 2, 3, 4 Tochterachsen 1., 2., 3., 4. Ordnung.

Fig. 83. Dictyota dichotoma (braune Meeresalge). 2⁄3 nat. Gr. Nach SCHENCK.

Bei der Verzweigung kann sich der Scheitel der Keimlingsachse selbst in zwei neue, gleichmäßig weiterwachsende Glieder teilen, gabeln (dichotome Verzweigung), so bei dem sich fortdauernd gabelnden, da durch fächerförmigen Thallus der braunen Meeresalge Dictyota dichotoma (Fig. 83 und das Schema Fig. 82 a). Bei anderen verzweigten Formen wachsen dagegen durch Neubildung von Vegetationspunkten Seitenzweige hervor, oft mit gesetzmäßiger Anordnung (seitliche Verzweigung). An höher organisierten Formen schränkt sich auch bei dieser Art der Verzweigung die Bildung solcher Vegetationspunkte immer mehr und mehr auf den Scheitel des Thallus ein; die dem Scheitel nächsten, jüngsten[S. 66] Seitenzweige sind alsdann die kürzesten. Eine solche scheitelwärts fortschreitende, akropetale Anlage neuer Seitenglieder ist bereits bei der grünen Fadenalge Cladophora deutlich (Fig. 84, vgl. auch Fig. 89). Bei der einfachsten Ausbildung der seitlichen Verzweigung geht eine einheitliche Hauptachse, die an der Spitze immer weiter wächst, ein Monopodium, durch das ganze Verzweigungssystem. Sie ist die Mutterachse für eine größere Zahl nacheinander meist ringsum entstandener und schwächer wachsender Seitenachsen, die sich in gleicher Weise verzweigen können. Man nennt diese Verzweigung die razemöse Verzweigung (vgl. das Schema Fig. 82 b).

Alle Seiten- (oder Tochter-)achsen, die unmittelbar an der Keimlingsachse entstehen, nennt man 1. Ordnung; solche, die an Tochterachsen erster Ordnung durch Verzweigung entstehen, 2. Ordnung und so fort (vgl. Fig. 82). Jede Achse, an der eine Tochterachse irgendeiner Ordnung entsteht, wird mit Bezug auf diese Auszweigung Mutterachse des Tochtergliedes genannt. Die Seitenachsen können unbegrenztes Wachstum haben, Langtriebe sein, oder es sind Kurztriebe mit begrenztem Wachstum.

An Achsen mit interkalaren Vegetationspunkten entstehen die Seitenzweige entweder akropetal oder basipetal.

Fig. 84. Stück einer Cladophora glomerata (Süßwasseralge). Vergr. 48. Nach SCHENCK.

Fig. 85. Unechte Verzweigung bei Spaltalgen. A Plectonema Wollei: nur das obere Ende des zerbrochenen Fadenstückes wächst als Ast aus. B Pl. mirabile: beide Enden wachsen weiter. OLTMANNS nach KIRCHNER u. BORNET.

Übrigens kommt bei Thallophyten auch die zymöse Verzweigung vor, die wir später beim Kormus näher kennen lernen werden.

Diese Verzweigungsarten nennt man echte. Im Gegensatz dazu findet sich bei einigen niederen, fadenförmigen Algen und Bakterien unechte Verzweigung. Sie kommt dadurch zustande, daß der Faden in zwei Stücke zerbricht, die aber durch eine Gallertscheide auch ferner zusammengehalten werden, und daß jedes durch den Bruch entstandene neue Fadenende zu einer fadenförmigen Zellreihe auswachsen kann (Fig. 85). Nicht von Ver[S. 67]zweigung, sondern von Zerteilung spricht man dagegen, wenn ein unverzweigter Thallus nachträglich in eine Anzahl Lappen zerteilt wird, wie es z. B. bei dem bandartigen Thallus von Laminaria (Fig. 352) der Fall ist.

Bei den Pilzen, die keine Kohlensäure assimilieren, sondern sich von organischen Stoffen ernähren, hat der Thallus dementsprechend ein besonderes Aussehen. Man nennt ihn Myzelium. Er besteht meist nur aus sehr dünnen in reichverzweigten, farblosen, zylindrischen Fäden (Fig. 86 und Fig. 6), den Hyphen, die das Substrat, z. B. den Waldhumus, allseitig durchziehen, so daß sie mit außerordentlich großer Oberfläche die nötigen Nährstoffe aufnehmen können. Schmarotzerpilze treiben meist Ausstülpungen von Hyphen als Saugfortsätze (Haustorien) in die lebenden Zellen der Wirtspflanzen, sofern sie nicht in den Zellen leben, sondern etwa mit ihren Hyphen das Interzellularsystem durchziehen (Fig. 87).

Fig. 86. Teil eines Myzeliums von dem Schimmelpilz Penicillium. Vergr. ca. 35.

Fig. 87. Haustorien (haust) von Peronospora parasitica in Parenchymzellen von Capsella. hy Interzellulare Hyphe. Vergr. 240.

Fig. 88. Thallus der Rotalge Delesseria sanguinea. 1⁄2 nat. Größe. Nach SCHENCK.

7. Arbeitsteilung zwischen den Thalluszweigen. Am reichsten gegliedert ist der Thallus in einigen Abteilungen der Schlauchalgen (Siphoneen), der braunen und der roten Meeresalgen (Phaeophyceen und Rhodophyceen). Die äußere Gliederung mancher solcher mit Haftscheiben, Haftlappen oder verzweigten Strängen befestigten Formen, die zum Teil sehr groß werden können (der Thallus der Braunalge Macrocystis wird über 45 m lang), erinnert auffallend an die des Sprosses der Kormophyten, so z. B. bei der roten Meeresalge Delesseria sanguinea (Fig. 88): an zylindrischen, verzweigten Thallusästen sitzen Seitenzweige, die blattähnlich gestaltet sind. Der Thallus hat bei vielen solchen Formen außer der Ausbildung eines Haftorgans (einer Haptere) und der Zweige eine weitere Arbeitsteilung zwischen seinen Gliedern eintreten lassen: einige Zweige sind zylindrisch und dienen[S. 68] dazu, das Wachstum und die Verzweigung des Thallus als Langtriebe fortzusetzen und die übrigen Triebe zu tragen. Die letzteren dagegen sind zu blattartigen Assimilationsorganen (Assimilatoren) mit begrenztem Wachstum, zu Kurztrieben, geworden. Ja, diese Kurztriebe zeigen manchmal unter sich nochmals eine Arbeitsteilung. Solche Formen sind morphologisch von höchstem Interesse, weil sie uns zeigen, wie die Blätter der Kormophyten aus Kurztrieben entstanden sein könnten.

Die Ausbildung blattähnlicher Kurztriebe an den Körpern von thallösen Pflanzen ist offenbar selbständig in jeder der genannten Reihen entstanden, nämlich da, wo Thallusstücke zu besonderen Assimilationsorganen wurden. Alle diese Gebilde nahmen annähernd gleiche Form, eben die Blattform, an. Die blattartigen Triebe der Siphoneen und Braunalgen sind, mit anderen Worten, denen der Rotalgen nicht homolog, sondern nur analog.

8. Innerer Bau der Thalli. Alle diese Thalli, mögen sie gegliedert oder ungegliedert sein, können aus einem einzigen Protoplasten bestehen (z. B. Schlauchalgen: Caulerpa, Fig. 348) oder, wie es meist der Fall ist, aus vielen Zellen sich zusammensetzen. Bestehen sie aus vielen Zellen, so sind diese entweder in einer Reihe zu einem Zellfaden (Fig. 84), in einer Fläche oder zu einem Zellkörper angeordnet. Die einfachsten mehrzelligen Thalli setzen sich aus lauter gleichförmigen und in gleicher Weise teilungsfähigen Zellen zusammen. Sobald ein Vegetationspunkt sich ausbildet, tritt aber eine Sonderung ein zwischen embryonalen, teilungsfähigen, und Dauerzellen. Die äußersten Spitzen der apikalen Vegetationspunkte werden bei vielzelligen Thalli fast stets von einer einzigen Zelle, der Scheitelzelle, eingenommen, die bei manchen Formen nur wenig von den anderen Zellen abweicht, so bei der Fadenalge Cladophora glomerata (Fig. 84). An den vielzelligen Langtrieben der büschelig verzweigten braunen Meeresalge Cladostephus verticillatus fallen die großen kuppenförmig gestalteten Scheitelzellen aber sofort auf (Fig. 89).

Jede solche an der Spitze fortwachsende Scheitelzelle teilt sich durch quere, einander parallele Wände, die von ihrem unteren Ende scheibenförmige Segmente abschneiden. Diese teilen sich in gesetzmäßiger Weise weiter zunächst durch Längswände, hierauf durch Querwände in eine größere Anzahl zunächst noch embryonaler Zellen. Aus bestimmten Randzellen der Segmente wachsen, spitzenwärts fortschreitend, die Seitenzweige (meist als Kurztriebe) hervor, die das Aussehen der Pflanze bestimmen (Fig. 89). Auch flache bandartige Körper können eine ähnlich gestaltete, nur entsprechend abgeflachte Scheitelzelle besitzen, so die in Fig. 90 dargestellte braune Meeresalge Dictyota dichotoma[60]. Von ihr (Fig. 90 A) werden durch grundwärts vorgewölbte Querwände flache Segmente abgeschnitten, die sich weiterhin durch Längswände teilen. Gelegentlich wird die Scheitelzelle aber auch durch eine Längswand in zwei nebeneinander liegende gleichgroße Scheitelzellen geteilt (B, a, a), deren jede einen Seitenzweig bildet. Dadurch kommen die Gabelungen des Körpers zustande.

Die Dauerzellen des Thallus sind fast immer, selbst bei den am reichsten gegliederten Thalli, nur Parenchymzellen. Ist der Thallus ein vielzelliger Körper, so kann wohl eine Sonderung eintreten in peripher gelegenes chlorophyllreiches Assimilationsparenchym, in Speicherparenchym, das an Reservestoffen reich und farblos ist, und in Leitparenchym aus langgestreckten Zellen.

Eine Veranlassung zur Ausbildung einer typischen Epidermis fehlt bei den vielzelligen Algen, da sie im Wasser eines Schutzes gegen Austrocknung nicht bedürfen und durch Schleimüberzüge vor zu starkem Wasserverlust bewahrt bleiben, wenn sie bei der Ebbe etwa an die Luft gelangen. Doch besitzen die Algen an ihren Oberflächenzellen schon eine äußere Zellmembranlamelle, die sich mit Chlorzinkjod braun färbt. Für genügende Festigung des Thallus, besonders bei den in der Brandung wachsenden Arten, wird durch starke Verdickung der Wände in den äußeren Zellagen, unter Umständen auch durch Inkrustationen mit kohlensaurem Kalk gesorgt. Beim Blasentang (Fucus vesiculosus) sind zudem besondere mechanische, durch ihre Dickwandigkeit, große Dehnbarkeit und[S. 69] Elastizität ausgezeichnete Zellen vorhanden. Den relativ höchsten Grad innerer Differenzierung zeigen die ebenfalls zu den braunen Algen gehörenden Laminarien. In den stammartigen Achsen, die bei diesen Pflanzen sehr dick werden, läßt sich Rinde, Zentralkörper und ein lockeres Mark unterscheiden. Die Rinde enthält vielfach Schleimgänge, das Mark sogar Züge siebröhrenartiger Zellen, die vielleicht der Stoffleitung dienen; solche Zellen kommen übrigens auch bei manchen Rhodophyceen vor. Die Laminarienachsen wachsen durch fortgesetzte Teilung der Rindenzellschicht in die Dicke. Die Produkte dieser Teilungstätigkeit bilden eine Art sekundäres Gewebe mit konzentrischen Zonen, die an Jahresringe der Samenpflanzen erinnern.

Die Thalli der Flechten kommen durch Verflechtung von Pilzhyphen zustande und können parenchymatische Struktur annehmen. Bei vielen Arten werden die peripherischen Schichten durch sehr dichte Verfilzung der Hyphen und sehr starke Verdickung der Hyphenwände zu schützenden Rinden über den assimilierenden Algen.

Fig. 89. Endtrieb von Cladostephus verticillatus. Vergr. 30. Nach N. PRINGSHEIM.

Fig. 90. Der Vegetationspunkt von Dictyota dichotoma und seine Gabelung. a Die Scheitelzellen. Nach E. DE WILDEMAN. Vergr. ca. 500.

Fig. 91. Riccia fluitans. Nat. Gr. Nach SCHENCK.

Fig. 92. Blasia pusilla. r Rhizoide. Vergr. 2. Nach SCHENCK.

b) Moose[61]. Im äußeren und inneren Bau der Moospflanzen (Bryophyten) kommt wie bei den Algen wieder zum Ausdruck, daß sie Kohlensäure assimilieren. Es gibt zunächst Lebermoosarten, deren Körper bandartig ist, sich gabelig verzweigt und auffällig dem Körper von Algen, wie Dictyota (Fig. 83), gleicht, so das Lebermoos Riccia fluitans (Fig. 91). Bei dem Lebermoos Blasia pusilla (Fig. 92) ist der bandartige Körper, der, wie viele andere thallöse Moose, eine Mittelrippe besitzt, seitlich gelappt, als ob blattartige Gebilde sich zu sondern begännen. Die am reichsten gegliederten Lebermoose, wie Plagiochila asplenioides (Fig. 93), und alle Laubmoose tragen solche an einem zylindrischen, verzweigten Stengel als besondere Assimilationsorgane.[S. 70] Seitenzweige sitzen an den Mutterachsen unter den Blättern. Auch diese dorsiventralen, bilateralen oder radiären sproßähnlichen Körper, die bei den Laubmoosen oft Polster bilden, sind den Sprossen der höheren Pflanzen nur analog. Man faßt sie wohl am besten als hoch differenzierte Thalli auf. Den Moosen, die im Gegensatze zu den meisten Algen in der Regel Luftorganismen sind, fehlen nämlich noch die Wurzeln; sie befestigen sich am Boden nur durch Rhizoiden: einzellige, an ihrer Basis mit einer Querwand abgegrenzte Haare oder verzweigte Zellfäden, die den Körper auch mit Wasser versorgen. Viele Formen können aber noch mit der ganzen Oberfläche ihrer Vegetationsorgane Wasser aufnehmen.

Liegt der Thallus der Unterlage auf, so ist er wie bei entsprechend lebenden Flechten meist dorsiventral ausgebildet und zeigt bei vielen Lebermoosen oft nur an seiner dem Lichte ausgesetzten Oberseite reicheren Chlorophyllgehalt (Fig. 95). Die Rhizoiden entspringen alsdann ausschließlich der Unterseite.

Auch bei den Moosen, die immer vielzellig sind, wird die Spitze des stets apikalen Vegetationspunktes oft von einer einzigen Scheitelzelle eingenommen.

Fig. 93. Plagiochila asplenioides mit jalousieähnlich übereinander greifenden Blättern. Nat. Gr. Nach SCHENCK.

Fig. 94. Schema des Vegetationspunktes von Metzgeria furcata im Augenblick der Verzweigung. Von der Rückenfläche gesehen. a Die Scheitelzelle der Mutterachse, b des Tochterzweiges. Vergr. ca. 370. Nach KNY.

Fig. 95. Oberflächenansicht und Querschnitt des Thallus der Marchantia polymorpha. In A eine Atemöffnung von oben, in B im Querschnitt, e Epidermis, s Randzellen der Atemöffnung, l Luftkammer, a Assimilationszellen, o Ölkörper, w Wassergewebe. Vergr. 240. Nach STRASBURGER und KOERNICKE.
Diese Zelle hat bei bandartigen Lebermoosen, wie Metzgeria und Aneura, ebenso schon bei ähnlich gestalteten Algen, keilförmige Gestalt (Fig. 94) und ist meist zweischneidig, seltener vierschneidig. Die zweischneidige gibt durch aufeinanderfolgende, abwechselnd nach rechts und links geneigte und schräg aufeinander stehende Wände nach zwei Seiten hin Segmente ab, die durch weitere Teilungen den Pflanzenkörper aufbauen; die vierschneidige gibt dagegen auch noch nach oben und unten Segmente ab. Die scheinbar rein gabelige Verzweigung der Lebermoose mit solchen Vegetationspunkten ist auf die frühzeitige Anlage neuer Scheitelzellen aus der randständigen Hälfte junger Segmente[S. 71] (Fig. 94 bei b) zurückzuführen. Bei den aufrecht wachsenden, radiär gebauten Thalli der Laubmoose hat die Scheitelzelle die Gestalt einer dreiflächig zugespitzten Pyramide. Man kann sie dreischneidig nennen. Auch die Blattanlagen der Laubmoose wachsen zuerst mit einer Scheitelzelle, und zwar mit einer zweischneidigen, zeigen also Spitzenwachstum; später wachsen sie interkalar.

Die Dauergewebe sind wesentlich vollkommener als bei den Algen gesondert. Das ist durch das Landleben bedingt, das andere Lebensbedingungen für die Moose als z. B. für die Algen brachte. Zur Abgrenzung einer Epidermis kommt es gleichwohl auch bei den Moosen nur ausnahmsweise, wenn auch die oberirdischen Teile von einer Art Kutikula überzogen sind. Doch setzt sich am Thallus der Marchantien eine äußerste Zellschicht von dem nächst inneren Gewebe deutlich ab. Sie ist von Öffnungen (Fig. 95) durchbrochen, die als Atemöffnungen bezeichnet werden und gleich den Spaltöffnungen der höheren Gewächse Luftspalten sind. Auch haarähnliche, Schleim absondernde Bildungen in Form von Papillen oder blattähnlichen Schuppen sind bei den Moosen weit verbreitet.

Typische Spaltöffnungsapparate mit zwei Schließzellen, die eine Spalte umschließen, findet man aber, wie GOEBEL[61] gezeigt hat, beachtenswerterweise im Thallus der Lebermoosgattung Anthoceros; freilich sind die Spaltöffnungen hier keine Luft-, sondern Schleimspalten.

Ein eigenartiger kapillarer Apparat im Dienste der Wasserversorgung ist bei den Torfmoosen (Sphagnaceen) ausgebildet. Die Rinde der Stämmchen besteht aus drei bis vier Schichten inhaltsleerer Zellen, die begierig Wasser aufsaugen, weil ihre ring- und schraubenförmig verdickten Längs- und Querwände mit runden Löchern versehen sind. In den Blättern liegen solche Zellen einzeln in den Maschen eines einschichtigen Netzes aus langgestreckten, lebenden, chlorophyllhaltigen Zellen.

Manche Lebermoose verfügen auch schon über besondere, der Stoffleitung dienende Stränge aus langgestreckten Zellen, die ihren Körper, bei bandartigen Formen in der Mittelrippe, durchziehen. Gegen das umgebende Gewebe deutlich abgegrenzt treten uns die Leitstränge aber erst bei den Laubmoosen entgegen.

Einen relativ einfach gebauten Leitstrang (l) dieser Art im Stämmchen von Mnium undulatum führt im Querschnitt die Fig. 96 vor. Am vollkommensten ist er in den Stämmchen der Polytrichaceen ausgebildet. Dort verläuft ein zentraler Strang aus langgestreckten, dünnwandigen und plasmaleeren, der Wasserleitung dienenden, aus dickwandigen, der Festigung dienenden Zellen und aus gestreckten Zellen, die Eiweiß und Kohlehydrate enthalten. Auch die einschichtige Blattspreite besitzt oft einen mehrschichtigen Mittelnerv, der einen Leitstrang der geschilderten Art enthalten kann. Dieser setzt sich dann in das Gewebe des Stengels hinein bis zu einem Leitstrang fort. Ferner kommen bei einigen Laubmoosen auch mechanische Zellen vor, die langgestreckt und zugespitzt sind und völlig Sklerenchymfasern gleichen.

Fig. 96. Querschnitt durch das Stämmchen, von Mnium undulatum. l Leitstrang, c Rinde, e die äußerste Zellschicht der letzteren, f Blattflügel, r Rhizoiden. Vergr. 90. Nach STRASBURGER.
c) Gametophyt der Kormophyten[61]. Auch in den Entwicklungsgang der Kormophyten, für die die Ausbildung des Kormus bezeichnend[S. 72] ist, ist ein thallöser Vegetationskörper eingeschaltet: Bei ihnen nämlich wechseln regelmäßig zwei Generationen von Vegetationskörpern miteinander ab, von denen nur die eine, die Sporenpflanze (Sporophyt), als Kormus, die andere aber, die Geschlechtspflanze (Gametophyt), als meist sehr einfach gegliederter und gebauter Thallus ausgebildet ist (Prothallium). Diese Generation lebt bei den Farnpflanzen meist selbständig als ein grünes, mit in der Regel einzelligen Rhizoiden am Boden befestigtes, flaches Gebilde (Fig. 97), das nur einige Zentimeter lang wird und einem kleinen Lebermoosthallus gleicht, aber auch aus verzweigten Zellfäden bestehen kann.

Fig. 97. Aspidium filix mas. Prothallium von der Unterseite. rh Rhizoiden. Vergr. ca. 8. Nach SCHENCK.
B. Der Kormus[62].
Die Vegetationsorgane des Sporophyten der Farnpflanzen (Pteridophyten) und der Samenpflanzen, die wir Kormus nennen wollen, gliedern sich, wie schon gesagt, noch viel weiter als die Thalli, nämlich in Sprosse und Wurzeln, die Sprosse in Sproßachsen und Blätter. Stengel, Blätter und Wurzeln sind die Grundformen des Kormus. Der Kormus zeigt in seinem äußeren und inneren Bau augenscheinliche Anpassungen an das Landleben.

Ebenso wie bei sehr vielen Thalli wird beim Kormus die Oberfläche durch Verzweigungen fast stets bedeutend vergrößert. Die Sproßachse bildet Seitensprosse (Seiten-, Tochterzweige), die Wurzel Seitenwurzeln (Neben-, Tochterwurzeln). Durch die Verzweigung, die bei vielen Gewächsen schon früh an der Keimpflanze beginnt; entsteht ein Sproß- und ein Wurzelsystem.

Den Ausdruck Kormus gebraucht man meist als gleichbedeutend mit Sproß und versteht darunter einen beblätterten Stengel ohne die Wurzeln. Auch den beblätterten Moosen schreibt man dann vielfach einen Sproß oder Kormus zu. Diese Auffassung stammt aus einer Zeit, wo man den Entwicklungsgang der Moose noch nicht genau kannte. Wir haben jetzt Grund zu der Annahme, daß der „Sproß“ der Moose mit den Sprossen der Farn- und Samenpflanzen nicht homolog ist. Also ist es zweckmäßiger, bei den Moosen, wie bei den „beblätterten“ Algen, noch nicht von Sproß oder Kormus zu sprechen. Es steht wohl nichts im Wege, den Begriff Kormus weiter zu fassen als den Begriff Sproß und mit diesem Ausdruck die in Sproß und Wurzeln gegliederten Vegetationsorgane der Kormophyten zu bezeichnen. Übrigens gibt es Übergänge zwischen Wurzeln und Sprossen (z. B. die Wurzelträger von Selaginella), wie auch zwischen Blättern und Sprossen (z. B. bei Utricularia).

1. Bau des typischen Kormus.
Wir wollen zunächst solche Kormi betrachten, denen wir typischen Bau zusprechen können. Die Besonderheiten der Grundformen treten nur in typischer Ausbildung, wie wir sie etwa bei unseren Bäumen oder vor allem bei vielen einheimischen Kräutern finden, deutlich zutage. Die Grundorgane können nämlich mancherlei Umbildungen erfahren, die so weit gehen können, daß ihre Unterschiede sich in extremen Fällen mehr oder weniger verwischen.

[S. 73]

a) Der Sproß[63].

Der Sproß, der bei Landpflanzen ganz in der Luft oder teilweise in der Luft (als Luftsproß), teilweise in der Erde (als Erdsproß, Fig. 143) lebt, letzteres bei sehr vielen ausdauernden krautigen Gewächsen (vgl. Fig. 125, 143), besteht aus dem Stengel, den man auch Sproßachse nennt, und aus den Blättern, die am meist grünen Luftsprosse hauptsächlich als grüne Laubblätter (Laubsproß), an den farblosen (weißen) Erdsprossen (Wurzelstöcken oder Rhizomen) aber als blasse Schuppen ausgebildet sind. Die Sproßachse ist der Träger der Blätter, sorgt für die Vergrößerung des Sproßsystems: für die Verlängerung des Stengels, für die Neubildung von Blättern und von Seitenzweigen, stellt die Verbindung der Blätter mit den Wurzeln her und dient der Stoffleitung zwischen diesen Organen. Die Sproßachse der meisten Erdsprosse dient ferner noch der Speicherung von Reservestoffen. Die Laubblätter sind wie die blattähnlichen Kurztriebe der thallösen Pflanzen die Assimilationsorgane und zugleich die Transpirationsorgane der Kormophyten. Diesen Funktionen entspricht der äußere und innere Bau der Laubblätter und des Stengels.

α) Der Vegetationspunkt. Der Sproß zeigt Scheitelwachstum mittels eines apikalen Vegetationspunktes, der sich an der äußersten Spitze, dem Scheitel des Stengels, befindet. Da der Vegetationspunkt gewöhnlich klein, dem bloßen Auge kaum sichtbar ist, so bekommt man ihn erst zu Gesicht, wenn man Längsschnitte durch den Sproßscheitel bei Lupenvergrößerung betrachtet (Fig. 98). Man sieht alsdann, daß er flach (Fig. 99) oder vorgewölbt (Fig. 98 v), manchmal auch steil kegelförmig ist (Vegetationskegel Fig. 100, 102), und daß an seiner Oberfläche, exogen, seitlich oder unterhalb seiner Spitze Höcker oder Wülste (f) dicht gedrängt in großer Zahl vorspringen: die Blattanlagen und zwischen ihnen die Anlagen der Seitenzweige (g). Die Blattanlagen entstehen in akropetaler Reihenfolge, sind daher um so größer, je weiter sie vom Scheitel entfernt sind. Ihre Gestalt wird auf Querschnitten durch den Vegetationspunkt besonders deutlich (Fig. 99).

Fig. 98. Sproßscheitel einer Samenpflanze. Bei v Vegetationspunkt, f Blattanlagen, g Seitenzweiganlagen. Vergr. 40. Nach STRASBURGER.

Fig. 99. Scheitelansicht eines Sproßvegetationspunktes von Evonymus japonica. Vergr. 12. Nach STRASBURGER.

Der Vegetationspunkt und die ganz jugendlichen Blattanlagen, die sich immer nur aus den embryonalen Teilen des Scheitels bilden, bestehen aus embryonalem Gewebe. Bei den meisten Farnen und den Schachtelhalmen liegt an der Spitze des Vegetationspunktes eine Scheitelzelle (Fig. 100 t). Sie ist dreischneidig, hat also die Gestalt einer dreiseitigen Pyramide (eines Tetraëders) mit vorgewölbter Grundfläche als Außenseite.

Die Scheitelzelle (Fig. 100 t und 101 A) an den Hauptsprossen des Ackerschachtelhalmes (Equisetum arvense) kann als Beispiel dienen. Sie erscheint, vom Scheitel aus gesehen (Fig. 101 A), als gleichseitiges Dreieck, in dem neue Scheidewände nacheinander[S. 74] nach drei Seiten, parallel zu jeder der Seitenwände (p), angelegt werden. Jedes Segment (S′, S″) wird durch Scheidewände (m) weiter zerlegt. Bei den Farnpflanzen mit Scheitelzellen beginnen auch die Blattanlagen (f, f′, f″) meist noch ihre Entwicklung mit einer solchen, und zwar mit einer zweischneidigen (f). Weiterhin büßen sie aber die Scheitelzelle meist ein und vollenden ihre Ausbildung durch „Randwachstum“ mittels vieler gleichwertiger zweischneidiger Randzellen. Ein solches Randwachstum findet sich z. B. bei den Blattanlagen von Equisetum. Auch die Anlagen der Seitenknospen (g) bilden sich aus einer Zelle, die zur Scheitelzelle der Anlage wird.

Fig. 100. Medianer Längsschnitt durch den Sproßvegetationspunkt des Schachtelhalms Equisetum arvense. Die Erklärung der Buchstaben im Text. Vergr. 240. Nach STRASBURGER.

Fig. 101. A Scheitelansicht des Vegetationskegels von Equisetum arvense. B Optischer Durchschnitt desselben Vegetationskegels unterhalb der Scheitelzelle. l Seitenwände der Segmente. Die Erklärung der übrigen Buchstaben im Text. Vergr. 240. Nach STRASBURGER.

Fig. 102. Medianer Längsschnitt durch den Vegetationskegel von Hippuris vulgaris (Tannenwedel). d Dermatogen, pr Periblem, pl Plerom, f Blattanlagen. Vergr. 240. Nach STRASBURGER.

Bei den Bärlappgewächsen (Lycopodiaceen) unter den Pteridophyten und bei den Phanerogamen gibt es keine solche Scheitelzelle am Vegetationspunkte. Hier treten an die Stelle der Scheitelzelle mehrere gleichwertige embryonale Zellen, die oft regelmäßig in schalenförmigen Schichten angeordnet sind (Fig. 102).

Die äußerste Zellschicht, die den Vegetationspunkt deckt, als einfache Zellschicht auch die jungen Blattanlagen überzieht und sich im Gegensatze zu den anderen Schichten meist nur durch antikline Wände teilt, heißt Dermatogen (d), weil sie meist ausschließlich die Epidermis der Pflanze liefert; die Zellen, mit denen der zentrale Gewebestrang des Stengels, der Zentralzylinder, im Vegetationspunkt endet, heißen Plerom (pl), die zwischen beiden gelegenen Zellschichten Periblem (pr). Plerom und Periblem lassen sich aber oft nicht unterscheiden. An solchen Vegetationspunkten ohne Scheitelzellen entstehen die Blätter und die Seitenzweige als vielzellige Höcker (Fig. 102).[S. 75] Ihre Anlage pflegt durch örtliche Vermehrung der äußersten Periblemschichten eingeleitet zu werden, während das Dermatogen sich auch hier nur rechtwinklig zur Oberfläche teilt. An den Anlagen der Blätter beteiligt sich außer dem Dermatogen nur das Periblem, an den Anlagen der Seitenzweige auch noch das Plerom[64].

Da auch für diese Vegetationspunkte die Regel der rechtwinkligen Schneidung der jungen Zellwände gilt, so bilden die Zellhäute in ihrer Gesamtheit auf Längsschnitten durch die Spitzen mancher kegelförmiger Vegetationspunkte auffallend symmetrische Figuren: die Periklinen sowohl wie die Antiklinen je eine Schar von Parabeln mit gemeinsamem Brennpunkte (Fig. 268). Die Elemente der einen Schar sind entgegengesetzt gerichtet wie die der anderen und schneiden diese annähernd rechtwinklig (SACHS). Auf Querschnitten durch solche Scheitel bilden die Periklinen aber konzentrische Kreise.

Knospe. Auf die Entwicklungsvorgänge, wodurch am Scheitel des Sprosses aus embryonalem Gewebe neue Glieder angelegt werden, folgt deren Größenzunahme, äußere und innere Ausbildung. Dieses Wachstum pflegt meist mit einer ausgiebigen Streckung der Blattanlagen zu beginnen. Dabei eilen die Blattanlagen also in ihrem Wachstum dem Wachstume der Stengelspitze voraus, und zwar wachsen ihre Unterseiten besonders stark. Infolgedessen schließen die älteren über dem Vegetationspunkt domartig zusammen (Fig. 98) und decken die jüngeren. Auf diese Weise bilden die größeren und älteren Blattanlagen einen sehr wirksamen Schutz des zarten Vegetationspunktes und der jüngsten Blattanlagen gegen Austrocknung, indem sie mit dem Vegetationspunkte eine Knospe bilden. Die Knospe ist also nichts anderes als das jugendliche, noch nicht fertig entwickelte Ende eines Sprosses.

Knospenlage und Knospendeckung. Wie Querschnitte durch Knospen lehren, fügen sich die Laubblattanlagen in verschiedener Weise den engen Raumverhältnissen in der Knospe: Knospenlage (Vernation). Sie können flach ausgebreitet oder auch der Länge nach zusammengelegt, gefaltet, gerollt (Fig. 103 l) oder zerknittert sein. Andererseits sieht man die aufeinanderfolgenden Blattanlagen entweder mit ihren Rändern sich nicht erreichen oder nur berühren oder, was gewöhnlicher ist, mit ihnen übereinander greifen (Fig. 103 k): Knospendeckung (Ästivation). Sie heißt im ersten Falle offen (aperte Ä.), im zweiten klappig (valvate Ä.), im dritten deckend oder dachziegelig (imbrikate Ä) (Fig. 103 k). Wenn alle Blätter einer Knospe mit dem einen Rande das nächste Blatt decken, an dem anderen Rande vom vorhergehenden Blatte gedeckt werden oder umgekehrt, so heißt die Knospendeckung gedreht (kontorte Ä.).

Fig. 103. Querschnitt durch eine Laubknospe von Populus nigra. Die Knospenschuppen k zeigen dachziegelige Deckung, die Laubblätter l haben eingerollte Knospenlage; zu jedem Laubblatt gehören zwei Nebenblätter ss. Vergr. 15. Nach STRASBURGER.
β) Die Sproßachse. A. Äußerer Bau. Der Stengel wächst erst in einiger Entfernung vom Vegetationspunkte durch Streckung ausgiebig in die Länge. Zugleich lösen sich hier die jugendlichen Blätter von der Knospe. Bezeichnend für den Stengel, namentlich der Luftsprosse, ist, daß dieses Streckungswachstum nicht auf ein kurzes Stengelstück dicht hinter der Knospe beschränkt bleibt, sondern auch noch in Stengelstücken stattfindet, die viele Zentimeter (bis über 50 cm) von der Knospe entfernt sind. Freilich ist es in den aufeinanderfolgenden Stengelzonen nicht gleich stark. Es kann überhaupt so gering sein, daß die Blätter des Sprosses auch im fertigen Zustande aneinanderstoßen, ohne freie Stammteile zwischen sich zu lassen. Meist aber ist es so stark und zugleich so verschieden verteilt, daß die Ansatzstellen der Blätter[S. 76] von nackten Stengelstücken getrennt werden (Fig. 115). Die zwischen den Befestigungsstellen der Blätter dabei sich ausbildenden, zylindrischen Stengelstücke nennt man Stammglieder, Stengelglieder oder Internodien, die Stengelzonen dagegen, an denen die Blätter befestigt sind, Knoten, Nodi. Das Streckungswachstum des Stengels ist in den Knoten viel geringer als in den Internodien und in diesen oft auf schmale Zonen, z. B. auf die Basis der Internodien, beschränkt, so bei den Gräsern (interkalares Wachstum); infolgedessen gibt es alsdann nicht mehr eine einheitliche Streckungszone im Stengel, sondern deren mehrere, die von ausgewachsenen Stengelstücken getrennt werden. Die Knoten können angeschwollen sein (siehe Labiaten).

Bei den Luftsprossen sind die Internodien meist dünn, bei den Erdsprossen dagegen oft sehr dick.

Die Länge der aufeinanderfolgenden Internodien an einer Achse (z. B. einem Jahrestrieb) zeigt oft eine bestimmte Gesetzmäßigkeit. Am häufigsten nehmen an der Hauptachse die Längen der Internodien in aufsteigender Richtung zunächst zu und dann wieder ab.

Blattstellung[65]. Besonders bezeichnend für die Sprosse ist die Blattstellung, d. h. die Verteilung ihrer Blätter. Sie kann recht verschieden sein. An einem Knoten können ein bis mehrere Blätter entspringen. Sind mehrere an einem Knoten vorhanden, so bilden sie einen Wirtel oder Quirl; sie sind die Glieder des Wirtels. In diesem Falle spricht man von wirteliger oder quirlständiger Blattstellung. Ist an jedem Knoten bloß ein Blatt ausgebildet, so liegt eine wechselständige Blattstellung vor.

Fig. 104. Querschnitt durch eine Laubknospe der Konifere Tsuga canadensis, dicht über dem Sproßscheitel geführt, 5⁄13 Divergenz. Vergr. etwa 20. Nach HOFMEISTER.

Fig. 105. Schema der 2⁄5-Stellung. Die Blätter ihrer genetischen Aufeinanderfolge nach mit Zahlen versehen. Nach STRASBURGER.

Untersucht man an aufrechten Sprossen mit allseitig ausgebreiteten Blättern die Verteilung der Blätter, so findet man auffällige, sehr beachtenswerte und eigenartige Gesetzmäßigkeiten. Unmittelbar fällt die Regelmäßigkeit der Blattstellungen an Scheitelansichten von Vegetationspunkten auf (Fig. 99, 104). Man sieht daran, daß die jüngsten Anlagen in gesetzmäßiger Weise unter Ausnutzung des vorhandenen Raumes sich den älteren anschließen. Am deutlichsten aber treten die Stellungsverhältnisse der Blätter hervor, wenn man einen schematischen Grundriß davon entwirft. Zu dem Zwecke zeichnet man, wie bei einem Gebäudegrundriß die Teile des Gebäudes, so die Lage der Blätter am Stengel auf eine zur Stengelachse rechtwinklige Ebene ein, indem man die Blätter durch die schematisierten Querschnittsfiguren ihrer Spreiten andeutet. Die Stengelachse denkt man sich kegelförmig; so wird es möglich, Organe, die senkrecht über tieferen stehen, innerhalb[S. 77] der unteren aufzuzeichnen. Solche Grundrisse von Blattstellungen nennt man Diagramme (Fig. 105). In ihnen ist das Zentrum der Stengelvegetationspunkt; die dem Zentrum nächsten Blätter sind die jüngsten und zugleich obersten Blattanlagen, die nach außen folgenden die jeweils im Alter nach unten folgenden Blätter. Zweckmäßig deutet man jeden Knoten durch einen Kreis an; auf die größeren dieser konzentrischen Kreise trägt man die älteren, auf die kleineren die jüngeren Blätter ein, mehrere Blätter an jedem Knoten natürlich auf die Peripherie eines Kreises. Übrigens bilden solche Diagramme oft ähnliche Figuren wie Querschnitte durch die Stengelknospe in der Nähe des Vegetationspunktes, die man bei Vergrößerung betrachtet (Fig. 99, 104).

An radiären aufrechten Sprossen werden die Blätter möglichst gleichmäßig rings um den Stengel verteilt. Durch diese Gesetzmäßigkeit wird erreicht, daß die ausgewachsenen Blätter sich nur wenig beschatten, also das Licht möglichst ausnutzen können. Diese Verteilung ist so gleichmäßig, daß der Winkel, den die Medianen am Stengel aufeinanderfolgender und in diesem Sinne benachbarter Blätter miteinander einschließen (z. B. in Fig. 105, Blatt 1 und 2, 2 und 3 usw.), überall oben und unten am Stengel in der Regel der gleiche ist. Man nennt ihn Divergenzwinkel oder, wenn man ihn in Bruchteilen des Stengelumfanges ausdrückt, Divergenz. Er ist bei verschiedenen Arten verschieden.

Fig. 106. Diagramm der dekussierten Blattstellung. Die punkt. Linien sind die Orthostichen. Nach STRASBURGER verändert.

Fig. 107. Diagramm der zweizeiligen Blattstellung. Die punkt. Linien sind die Orthostichen. Nach STRASBURGER verändert.

Bei wirteliger Blattstellung entspricht der Divergenzwinkel der Blätter eines Wirtels (Fig. 106), dem Kreisumfange dividiert durch die Anzahl der Wirtelblätter, die in der Regel bei allen Wirteln konstant ist. Die Blätter der aufeinanderfolgenden Wirtel stehen nicht übereinander, wechseln vielmehr von Wirtel zu Wirtel miteinander so ab, daß die Glieder des nächst höheren Wirtels in die Mitten der Lücken zwischen den Gliedern des nächst tieferen Wirtels fallen (Fig. 99, 106); man sagt, die Blätter aufeinanderfolgender Wirtel wechseln ab, alternieren. Folge dieses regelmäßigen Wechsels und der Gleichheit der Divergenzwinkel in allen Wirteln ist, daß sämtliche Blätter an einem Stengel mit Quirlstellung in Längsreihen angeordnet sind, deren Zahl doppelt so groß ist wie die Zahl der Blätter eines Wirtels (Fig. 106). Diese Längs- oder Geradzeilen heißen Orthostichen. Verhältnismäßig häufig ist bei Wirtelstellungen die Ausbildung zweigliedriger Quirle (Fig. 99, 106). Bei dieser Blattstellung, die man dekussiert nennt, ist der Divergenzwinkel 180° (die Divergenz also 1⁄2), und gibt es vier Orthostichen. Bei dreigliedrigen Wirteln ist der Divergenzwinkel 120° (die Divergenz 1⁄3), bestehen sechs Orthostichen usw.

Fig. 108. Halbschematische Ansicht des Fichtenzapfens von unten. Schuppen in 8⁄21-Stellung. I–VIII System gleichartig im Sinne des Uhrzeigers den Zapfen umlaufender Parastichen, 1–5 System entgegengerichtet den Zapfen umlaufender Parastichen. Im übrigen vgl. den Text.
Bei wechselständigen Blattstellungen kann die Divergenz, auf dem kürzesten Wege gemessen, 1⁄2, 1⁄3, aber auch z. B. 2⁄5, 3⁄8, 5⁄13 sein. Das Diagramm Fig. 107 führt uns die 1⁄2-Stellung, Fig. 148 die 1⁄3-, Fig. 105 die 2⁄5-, Fig. 104 die 5⁄13-Stellung vor. Auch bei wechselständigen Blattstellungen müssen die Blätter infolge der Gleichheit der Divergenzwinkel in Längszeilen, Orthostichen, am Stengel angeordnet sein: bei 1⁄3-Stellung[S. 78] fällt augenscheinlich Blatt 4 senkrecht über Blatt 1 (Blatt 5 über 2, 6 über 3, 7 über 1 usw.); bei 2⁄5-Stellung (Fig. 105) fällt Blatt 6 über Blatt 1, 7 über 2, 8 über 3 usw. Denkt man sich die Ansatzstellen der am Stengel aufeinanderfolgenden Blätter auf dem kürzesten Wege des Stengelumfanges durch eine Linie verbunden (also in Fig. 105 von Blatt 1 über 2, 3, 4, 5 usw.), so erhält man eine den Stengel umlaufende Schraubenlinie, die als Grundspirale bezeichnet wird. Deshalb nennt man die wechselständigen Blattstellungen wohl auch Schrauben- oder Spiralstellungen. Jeder Abschnitt der Grundspirale, den man von Blatt zu Blatt fortschreitend durchlaufen muß, um von einem Blatte zu dem ersten senkrecht darüberstehenden zu gelangen (in Fig. 105 z. B. von 1 bis 6, oder 3 bis 8), heißt Zyklus der Grundspirale. Bei 1⁄3-Stellung besteht der Zyklus aus drei Blättern; man muß einmal den Stengelumfang durchlaufen, um den Zyklus zurückzulegen. Bei 2⁄5-Stellung (wie in Fig. 105) besteht der Zyklus immer aus fünf Blättern; man muß zweimal den Stengelumfang umkreisen. Der Zähler des Bruches einer Divergenz gibt also stets an, wie oft ein Zyklus die Sproßachse umkreist; der Nenner dagegen, wie viele Blätter der Zyklus enthält, infolgedessen auch, wie viele Orthostichen es gibt und welches Blatt als nächst höheres in der Orthostiche über einem irgendwie bezeichneten steht. Bei 5⁄13-Stellung z. B. muß man fünfmal die Sproßachse umkreisen, um das nächst höhere Blatt zu erreichen, gibt es 13 Orthostichen, steht über Blatt 3 Blatt 16 (3 + 13), über Blatt 8 Blatt 21 (8 + 13). Da der Nenner des Bruches stets die Anzahl der Orthostichen angibt, so nennt man die 1⁄2-Stellung auch die zweizeilige, die 1⁄3-Stellung die dreizeilige usw. Stehen die Blätter am Stengel so gedrängt, daß sie sich berühren, so fallen nicht die Orthostichen, sondern mehr oder weniger steil aufsteigende Schraubenlinien auf, die als Schrägzeilen oder Parastichen bezeichnet werden. Sie entstehen durch die Berührung derjenigen Blätter, deren seitlicher Abstand voneinander an der Sproßachse am kleinsten ist. Sehr deutlich sieht man die Schrägzeilen z. B. am Fichtenzapfen, wovon in Fig. 108 eine etwas schematisierte Ansicht von unten gegeben ist. Die Parastichen sind in dieser Grundansicht Schraubenlinien. Mehrere Systeme untereinander gleichsinnig verlaufender Parastichen treten deutlich hervor: eines (mit ungebrochenen Linien I-VIII bezeichnet) umläuft den Zapfen im Sinne des Uhrzeigers; zwei entgegengerichtete kreuzen dieses; davon ist das eine (mit gestrichelten Linien 1–5 bezeichnete) flach, das andere (mit fein punktierten Linien bezeichnete) steil gewunden. Man kann zwei beliebige sich kreuzende Systeme gleichartiger Parastichen dazu benutzen, die Divergenzen solcher Blattstellungen zu bestimmen. Bezeichnet man irgendein Blatt mit 1 (vgl. dazu die Fig. 108), so erhält man die Nummer des in der Parastiche nächst folgenden Blattes dadurch, daß man zu 1 die Gesamtzahl der gleichartigen Schrägzeilen des Systems addiert, die es rings um den ganzen Stengel gibt. Parastichen mit ungebrochenen Linien gibt es, wie man ohne weiteres abzählen kann, 8; also ist das nächste Blatt in dieser Parastiche 1 + 8 = 9, das nächste 9 + 8 = 17 usw. Gleichartig verlaufende Schrägzeilen von entgegengesetzter Neigung gibt es z. B. gebrochen gestrichelte 5 (fein punktierte aber 13); also sind die auf 1 in der gestrichelten Parastiche folgenden Blätter 1 + 5 = 6, 6 + 5 = 11 usw. (in der punktierten Parastiche dagegen 1 + 13 = 14, 14 + 13 = 27 usw.). Diese Gesetzmäßigkeit rührt daher, daß in jedem System gleichartig verlaufender Parastichen zwischen den benachbarten Blättern einer Parastiche noch so viele Blätter am Stengel befestigt sein müssen, als es außer dieser Parastiche noch weitere Schrägzeilen in dem System gibt[S. 79] (z. B. in dem System mit ungebrochenen Linien 7; 7 Blätter liegen also zwischen 1 und dem nächsten Blatt der Parastiche, demnach muß dieses auf 1 + 7 folgen, also das 9. sein); das gleiche gilt natürlich auch für die Orthostichen. Nummeriert man in dieser Weise alle Blätter, so ergeben die aufeinanderfolgenden Zahlen 1, 2, 3, 4 usw. die Grundspirale und die Divergenz. Der Fichtenzapfen in Fig. 108 hat die Blattstellung 8⁄21: dementsprechend liegen die Blätter 1, 22, 43 usw. in einer Orthostiche übereinander. — Bestimmt man nun bei den verschiedensten Pflanzen mit wechselständigen Blattstellungen die Divergenzen, so fällt auf, daß gewisse Divergenzen ganz besonders häufig sind; sie bilden die Reihe 1⁄2, 1⁄3, 2⁄5, 3⁄8, 5⁄13, 8⁄21, 13⁄34 usw. Diese Brüche haben merkwürdige Beziehungen zueinander: Zähler und Nenner eines jeden sind die Summen der Zähler und Nenner der beiden vorausgehenden Brüche. Die Divergenzen dieser Reihe bewegen sich sämtlich zwischen 1⁄2 und 1⁄3 des Stengelumfanges. Sie weichen um so weniger voneinander ab, je mehr sie sich vom Anfang der Reihe entfernen, und nähern sich immer mehr einem Winkel von 137° 30′ 28″. Man hat diese Reihe als die Hauptreihe der Blattstellungen bezeichnet. Daneben gibt es auch noch andere Reihen ähnlicher Art. Die Hauptreihe ist aber vielleicht allen anderen Reihen dadurch überlegen, daß bei ihren Brüchen mit der kleinsten Zahl von Blättern die möglichst gleichmäßige Verteilung aller an der Sproßachse erreicht wird. Die Entdecker der Reihen waren CARL SCHIMPER und ALEXANDER BRAUN.

Aufrechte radiäre Stengel mit langen Internodien oder mit breiten Blättern haben oft wenige Orthostichen, solche mit kurzen Internodien oder mit schmalen Blättern meist viele. Man findet also in diesem Falle bei Schraubenstellung stets Divergenzen, die den höheren Gliedern der Reihen entsprechen.

An geneigten dorsiventralen Stengeln sind die Stellungsverhältnisse der Blätter relativ einfach. Am häufigsten ist hier 1⁄2-Stellung oder eine ähnliche Anordnung, wobei sich die Blattflächen parallel zum Horizont stellen; dadurch werden die günstigsten Verhältnisse für die Beleuchtung geschaffen. Die 1⁄2-Stellung wird überaus häufig durch Drehung der Internodien erreicht, so bei der verbreiteten dekussierten Blattstellung, die bei geneigten Achsen durch solche Drehung zu einer zweireihigen Anordnung mit einer Blattreihe rechts, der anderen links von der Achse wird. Auch bei wechselständigen Stellungen kommt ähnliches vor und ermöglicht es den Blattspreiten, das volle Oberlicht auszunutzen. So ist die Stellung der Laubblätter eine Anpassung an die Lichtbedürfnisse der Pflanzen. Bei manchen horizontal wachsenden Erdsprossen (z. B. von Farnen) stehen die Blätter in einer oder zwei Reihen auf der Oberseite.

Über die Ursachen der Blattstellungsgesetzmäßigkeiten wissen wir noch gar nichts. SCHWENDENERs Annahme, daß rein mechanische Ursachen die Anordnung der Blätter bestimmen, hat sich als unbegründet erwiesen[66]. Jedenfalls brauchen die Blätter durchaus nicht etwa in der Reihenfolge ihrer Grundspirale oder als Glieder eines Wirtels gleichzeitig am Scheitel zu entstehen; manchmal kann sogar eine Seite des Vegetationspunktes in der Erzeugung von Blattanlagen wesentlich gefördert sein. Ebensowenig nehmen sie bei Spiralstellungen als Anlagen am Scheitel stets die gleichen Stellungen ein wie am ausgewachsenen Stengel; ihre Divergenzen an letzterem werden vielmehr oft erst durch sekundäre Verschiebungen hergestellt.

B. Primärer innerer Bau des Stengels[67]. Der Stengel zeigt eine viel weitergehende Gewebedifferenzierung als die Langtriebe selbst der am reichsten gegliederten Thalli. Zu äußerst finden wir als Abschluß eine typische Oberhaut oder Epidermis. Darunter liegt in den Internodien (die verwickelter gebauten Knoten lassen wir außeracht) meist ein mehrschichtiger leitbündelfreier Gewebemantel, die Rinde, die das übrige leitbündelhaltige Gewebe des Stengels, den Zentralzylinder (Fig. 109), umschließt.

Wenn sich auch bei manchen Monokotylen eine Rinde von einem Zentralzylinder nicht unterscheiden läßt, weil die Leitbündel bis dicht unter die Epidermis gerückt sind, und auch sonst oft eine scharfe Grenze zwischen beiden fehlt, so scheint es doch praktisch, an dem viel gebrauchten Begriff Zentralzylinder festzuhalten.

Die Rinde besteht hauptsächlich aus Parenchym, und zwar bei den grünen Luftsprossen an der Peripherie vorwiegend aus chlorophyllhaltigem Parenchym, das in dicken Rinden weiter innen in farbloses (Speicher-)Parenchym übergehen kann; bei den farblosen Erdsprossen, die oft viel dicker als jene[S. 80] sind, besteht es nur aus farblosem Parenchym, das, ebenso wie das übrige Parenchym der Rhizome, reich an Reservestoffen ist. Häufig ist ein Teil der Rinde als Festigungsgewebe ausgebildet. Die Stengel der Luftsprosse als die Träger der Blattlast sind namentlich unter dem Einfluß des Windes der Gefahr der Knickung ausgesetzt; sie müssen allseitig biegungsfest gebaut sein. Dafür sorgt meist Festigungsgewebe, in Form von Lagen oder Strängen aus Kollenchym oder Sklerenchym, die möglichst peripher, nicht selten in vorspringenden Kanten des Stengels direkt unter der Epidermis ausgebildet zu sein pflegen (Fig. 111, 1 u. 2).

Fig. 109. Querschnitt durch ein Stengelglied des Mais (Zea mays). pr Rinde, pc Perizykel, cv Leitbündel, gc Parenchym des Zentralzylinders. Vergr. 2. Nach SCHENCK.

Fig. 110. 1 Längsschnitt durch einen elastischen Zylinder, vor der Biegung (punktiert) und danach (ausgezogen). F Die Füllung. Vor der Biegung alle Längskanten gleich lang; nach der Biegung die Außenkante a′ verlängert, die Außenkante a verkürzt. 2 Bei ungenügender und unwirksamer Füllung f krümmen sich die Gurtungen a und a′ leicht jede für sich, da sie dabei gleichlang bleiben können. Nach NOLL.

Fig. 111. Biegungsfeste Konstruktionen des Stengels. 1 Querschnitt durch einen jungen Sambucussproß. c Kollenchymbündel. Die innere punktierte Figur ist der Ring von Leitbündeln. 2 Teil eines Halmquerschnittes vom Pfeifengras (Molinia coerulea). Sc Sklerenchymrippen, ScR Sklerenchymring als tangentialer Verband dazwischen. A Grünes Assimilationsgewebe. MH Markhöhle. Nach NOLL. 3 Zusammengesetzter Träger, stärker vergr. u. schematisiert. g′ g″ Gurtungen. f Füllung (in Form eines Leitbündels).
Die Biegungsfestigkeit wird nämlich bei sparsamer Verwendung von Festigungsmaterial am besten durch seine periphere Anordnung erreicht. Wenn man einen geraden Stab biegt, so wird die konvexe Seite notwendig verlängert, die konkave verkürzt. Wie die Fig. 110 zeigt, müssen dabei die äußersten Kanten a, a und a′, a′ des gebogenen Stabes am meisten beeinflußt: a′, a′ am stärksten gedehnt, a, a am stärksten zusammengedrückt werden, während die Längsstreifen i, i und i′, i′ im Innern sich nur wenig verlängern oder verkürzen. Wenn man also nicht den ganzen Stab aus fester Masse[S. 81] aufbauen, sondern mit dem Festigungsmaterial sparsam umgehen will, so wird man es möglichst an der Peripherie anbringen müssen; denn hier wird es einerseits Biegungen den größten Widerstand entgegensetzen, andererseits bei stärkeren Biegungen infolge seiner Festigkeit weniger leicht zerrissen oder zerquetscht werden als widerstandsloseres Material. Allbekannt ist ja, wie groß die Biegungsfestigkeit von Eisenröhren selbst mit ganz dünnen Wänden, sog. Mannesmannröhren, ist. Einen hohen Grad von Festigkeit erreicht der Techniker schon dadurch, daß er an der Peripherie biegungsfester Konstruktionen parallel zueinander und zur Längsachse des Gebildes einzelne Stäbe aus Festigungsmaterial, sog. Gurtungen, spannt. Von wesentlicher Bedeutung ist dabei, daß diese Gurtungen durch widerstandsfähige, gleichfalls elastische Füllungen (Fig. 111, 1) in ihrem wirksamen Abstande und in ihrem Verbande erhalten werden. Jeder Stab (Gurtung) bildet alsdann mit dem ihm auf der Gegenseite gegenüberliegenden einen Träger; das Material, das quer durch die Konstruktion hindurch zwischen den Stäben liegt, ist die Füllung dieses Trägers (Fig. 110). Wenn solche Füllungen fehlen, würde jeder Stab sich einzeln leicht biegen lassen. Sie können aber in hohlen Gebilden durch tangentialen Verband der Gurtungen, sei es durch Festigungsmaterial, sei es durch anderes ersetzt werden. Bei größeren biegungsfesten Konstruktionen ersetzt der Techniker die peripher gespannten Stäbe ihrerseits meist durch Träger, die wiederum aus zwei Gurtungen und einer Füllung bestehen (die Eisen-I-Träger der Technik).

Wie SCHWENDENER[51] zuerst gezeigt hat, sind die mechanischen Gewebe, die dem Pflanzenstengel Biegungsfestigkeit verleihen, etwa so angeordnet, wie es der Techniker tun würde, um sie mit wenig Aufwand von Festigungsmaterial widerstandsfähig zu machen. Bei vielen Gewächsen bildet das Festigungsgewebe einen peripheren Hohlzylinder, der direkt auf die Epidermis folgen oder tiefer ins Gewebe eingesenkt sein kann (Fig. 112 pc); bei anderen ein System entsprechend angeordneter, isoliert nebeneinander verlaufender Stränge (System der einfachen Träger Fig. 111, 1), die manchmal einem Hohlzylinder außen noch aufgesetzt sind (Fig. 111, 2); bei noch anderen ist jeder dieser peripheren Stränge selbst wieder in Form eines Trägers gestaltet (Fig. 111, 3), dessen Gurtungen alsdann allein aus mechanischem Gewebe bestehen, dessen Füllung aber meist aus einem Leitbündel gebildet wird (System der zusammengesetzten Träger). Monokotylenstengel sind im allgemeinen viel vollkommener biegungsfest gebaut als die Dikotylen- und Gymnospermenstengel in ihren primären Geweben; bei diesen wird die Festigkeit durch das sekundäre Dickenwachstum nachträglich noch erhöht. In grüngefärbten Stengeln, die an der Assimilationsarbeit beteiligt sind, liegen die mechanischen Gewebe entweder nicht direkt unter der Epidermis, so daß die Peripherie den lichtbedürftigen grünen Geweben überlassen bleibt, oder sie teilen sich an der Peripherie mit ihnen in den Raum (Fig. 111, 2).

Die innerste Zellschicht der Rinde pflegt in oberirdischen Stengelteilen von Landpflanzen, namentlich wenn sie völlig ausgewachsen sind, nicht besonders ausgebildet zu sein. In diesem Falle gibt es also keine scharfe Grenze zwischen Rinde und Zentralzylinder. Sie kann in ihnen aber auch als Stärkescheide, ferner namentlich in den Erdsprossen von Landpflanzen und in den Stengeln von Wasserpflanzen als typische Endodermis oder als eine Kutis ausgestaltet sein. Ist sie eine Stärkescheide (st Fig. 112 A und B), so zeichnen sich ihre Zellen durch den Gehalt an großen, leicht beweglichen Stärkekörnern aus.

Vielfach ist eine Stärkescheide nur in jungen Pflanzentrieben vorhanden, schwindet aber in älteren oder bleibt dort nur auf bestimmte Stellen beschränkt. Statt gemeinsamer Stärkescheiden oder Endodermen kann es auch solche um die einzelnen Leitbündel geben (Fig. 119 pp) oder an ihrer Stelle einzelne Zellreihen, die leicht bewegliche Stärkekörner enthalten.

Der Zentralzylinder besteht ebenfalls vor allem aus Parenchym, das seiner Lage entsprechend farblos oder nur schwach grün ist und hauptsächlich der Speicherung und Leitung von Stoffen dient; daneben kommt oft auch Sklerenchym in ihm vor. Seine wichtigsten Bestandteile aber sind die Leitbündel. Sie sind es, die die Blätter von den Wurzeln her mit Wasser und mit den notwendigen Nährsalzen aus dem Boden versorgen und umgekehrt organische Substanzen aus den Blättern zu dem Wurzelsystem schaffen. Die Bündel[S. 82] sind in das übrige Gewebe des Zentralzylinders eingebettet, wovon sie sich durch ihre engen Elemente und den Mangel an Interzellularen schon bei ganz schwacher Vergrößerung abheben. Sondert sich der Zentralzylinder gegen die Rinde durch eine Scheide scharf ab, so pflegen die Leitbündel nicht direkt an die Scheide anzugrenzen; den peripheren, ein- bis mehrschichtigen, leitbündelfreien Gewebemantel des Zylinders, der nicht selten aus Parenchym besteht (Fig. 112 A, B, pc), kann man als Perizykel bezeichnen.

Entweder ist nur ein zentrales Leitbündel im Stengel vorhanden, wie bei manchen Farnen und bei Lycopodium, oder es verlaufen im Stengel mehrere Leitbündel. In diesem Fall, der die Regel bildet, haben die Leitbündel einen bestimmten Verlauf und auf den Stengelquerschnitten infolgedessen eine eigenartige Anordnung. Auf den Querschnitten durch die Internodien sind sie nämlich im Zentralzylinder bei den Schachtelhalmen (Equiseten), den meisten Farnen, Gymnospermen und Dikotylen (Fig. 165) in einem Kreise angeordnet, dagegen bei den Monokotylen (Fig. 109) ohne Ordnung zerstreut. Bilden die Leitbündel einen Kreis, so gelten die von ihnen umschlossenen Gewebe des Zentralzylinders, die meist aus lebenden oder auch aus frühzeitig absterbenden Parenchymzellen bestehen, als Mark (Fig. 112 A, m), die die Bündel seitlich trennenden Gewebe als Markstrahlen (ms). Bei zerstreuter Verteilung der Bündel (Fig. 109) fehlt diese Sonderung.

Fig. 112. A Teil eines Querschnittes durch einen jungen Stamm von Aristolochia Sipho. e Epidermis, pr Rinde, st Stärkescheide, c Zentralzylinder, pc Perizykel, in diesem Falle mit einem Ring von Sklerenchymfasern, cv Leitbündel, und zwar cv″ Gefäßteile, cv′ Siebteile, cb Kambiumring, m Mark, ms Markstrahl. Vergr. 48. B Kleiner Teil eines Querschnittes aus dem Umkreis eines noch jüngeren Stammteils. e Epidermis, pr Rinde, st Stärkescheide mit leicht beweglichen Stärkekörnern, pc äußere Zellschichten des Perizykels. Vergr. 350. Nach STRASBURGER.
Doch gibt es auch Farne (z. B. Pteris) und Dikotylen, bei denen die Leitbündel zwei (Cucurbita, Phytolacca, Piper) oder mehr Kreise (Amarantus, Papaver, Thalictrum) bilden. Die inneren Kreise pflegen wenig regelmäßig zu sein. Ferner gibt es in beiden Gruppen Gewächse, bei denen außer dem Bündelring und den Markbündeln noch kleine akzessorische Rindenbündel vorkommen.

Die Markstrahlen können aus Parenchym bestehen; nicht selten, z. B. bei vielen Kräutern, werden aber ihre inneren Teile, zwischen den Gefäßsträngen der Leitbündel, aus Sklerenchym gebildet, wogegen sich die äußeren parenchymatischen Teile zwischen den Siebsträngen der Bündel alsdann scharf absetzen.

Unterirdische Stengelteile (Erdsprosse) und submerse Wasserpflanzen, die zugfest gebaut sein müssen, haben die mechanischen Gewebe oft in ihrer Mitte, also im Marke.

Leitbündelverlauf. Ihren Funktionen entsprechend bilden die Leitbündel in den Pflanzen ununterbrochene Stränge, die sich, namentlich an Ma[S. 83]zerationspräparaten, von den Wurzelspitzen bis in die Blattspitzen verfolgen lassen. Solche Präparate kann man aus krautartigen Pflanzenteilen gewinnen, die man in Wasser so lange liegen läßt, bis die Gewebe mit Ausnahme der resistenteren Leitbündel verfault sind.

Im Stengel ist der Verlauf besonders verwickelt. In die Basis der Sproßachse tritt das Leitbündel der Wurzel ein, das sich mit den Stengelbündeln vereinigt (vgl. S. 118). Die Stengelbündel können bis zur Stengelspitze verlaufen, ohne an ihrem Ende in Blätter überzugehen. Man nennt solche Leitbündel stammeigene Bündel. Umgekehrt sind blatteigene solche, die gleich nach ihrem Eintritte aus den Blättern in den Stengel mit stammeigenen Bündeln verschmelzen.

So bilden bei den Pteridophyten stammeigene Leitbündelstränge im Stengel ein netzartiges Bündelrohr oder auch ein einziges zentrales Leitbündel (Lycopodium u. a.), während die aus den Blättern kommenden blatteigenen Bündelstränge sich mit diesen stammeigenen Bündeln vereinigen.

Meist aber biegen die Bündel der Sproßachse an ihren Spitzen in die Blätter aus: gemeinsame Bündel, die also mit ihren unteren Teilen im Stengel, mit ihren oberen im Blatte verlaufen. In jedes Blatt kann ein oder können mehrere solche Bündel eintreten, die man in ihrer Gesamtheit als Blattspur bezeichnet. Es gibt also ein- und mehrsträngige Blattspuren. Bei den Samenpflanzen besteht das Leitbündelsystem des Stengels vor allem aus solchen Blattspuren.

In den Stengeln mancher Dikotylen (Begonien, Aralien) sind aber die innerhalb des Kreises der Blattspurstränge verlaufenden Kreise von Markbündeln stammeigene Bündel, die in den Knoten mit den Blattspursträngen durch Querzweige verbunden sind.

Die Blattspurbündel können im Stengel dauernd voneinander getrennt bleiben. Meist aber vereinigt sich jedes Bündel einer Blattspur bei seinem Abwärtsverlaufe schließlich mit einem anderen Bündel, das aus einem tiefer an der Achse befestigten Blatte stammt. Dieser Vereinigung kann eine Spaltung (Gabelung) des Bündels vorausgehen. Durch einen solchen netzartigen Verlauf der Bündel wird eine gleichmäßige Versorgung der Pflanze mit Wasser erreicht, da ein jedes Bündel des Stengels infolge seiner Verzweigungen größeren Sproßabschnitten Wasser liefert. Je nach der Länge des Weges, den die einzelnen Bündel im Stengel frei zurücklegen, der Richtung, die sie verfolgen, und der Spaltung, die sie unter Umständen erfahren, ist das Bild des Bündelverlaufes bei den verschiedenen Arten ein anderes. Natürlich ist die Blattstellung für die Eintrittsstellen der Blattspuren in den Stengel bestimmend; der Verlauf im Stengel ist aber von der Blattstellung ganz unabhängig, so daß er bei ein und derselben Blattstellung ganz verschieden sein kann.

Bei den Schachtelhalmen, den Koniferen und den Dikotylen dringen alle Blattspurstränge gleich tief in den Stengel ein, um im Stengel auch gleich weit von der Stengelmitte, also auf dem Querschnitt zu dem charakteristischen Kreise geordnet, nach abwärts zu laufen. Infolgedessen kann man den Bündelverlauf in den Internodien auf einer Zylinderfläche darstellen, die sich in eine Ebene ausbreiten läßt. In den Knoten freilich ist der Bündelverlauf meist viel verwickelter, weil hier die Blattspurstränge noch durch stammeigene Querverbindungen miteinander verbunden sind. Nachträgliche seitliche Verbindungen findet man übrigens oft auch in den Internodien.

Ein relativ einfaches Beispiel eines Bündelverlaufs liegt in den jungen Zweigen von Juniperus nana vor (Fig. 113). Ihre Blätter stehen in dreigliedrigen Quirlen. Aus jedem Blatt tritt eine einsträngige Blattspur, somit ein einziges Bündel in den Stengel ein. Etwa in der Mitte des nächst unteren Internodiums gabelt es sich in zwei Schenkel, die je rechts und links mit benachbarten Blattspuren verschmelzen. Weniger einfach erscheint das Bild des in Fig. 114 dargestellten Bündelverlaufs in einem jungen Zweige[S. 84] von Taxus baccata, obwohl auch hier die Blattspuren einsträngig sind. Jede Blattspur läßt sich frei durch 12 Stengelglieder abwärts verfolgen, worauf sie mit einer anderen verschmilzt. Zunächst läuft sie durch vier Internodien gerade abwärts, dann biegt sie seitlich aus, um einer eintretenden Spur Platz zu machen und sich mit ihr zu vereinigen. Bei Taxus stehen die Blätter nach 5⁄13; dementsprechend zeigen auch die Eintrittsstellen der Blattspuren in den Stengel 5⁄13 Divergenz. Ein Beispiel dreisträngiger Blattspuren sei aus einem jungen Zweige der italienischen Waldrebe (Clematis Viticella) vorgeführt. Die Blattpaare an diesen Zweigen stehen dekussiert. Die Medianstränge der Blattspuren (a u. d, g u. k, n u. q, t u. x Fig. 115) laufen durch ein Internodium abwärts, teilen sich im nächsten Knoten in zwei Schenkel und fügen diese den ihnen zugekehrten Lateralsträngen der Blattspuren des dortigen Blattpaares an. Die zwei Lateralstränge jeder Blattspur (b u. c, e u. f, h u. i, l u. m, o u. p, r u. s) lassen sich ebenfalls durch ein Internodium frei abwärts verfolgen, biegen im nächsten Knoten zusammenneigend nach außen und legen sich den nämlichen Lateralsträngen wie die Schenkel des Medianstranges an.

Fig. 113. Schematische Darstellung des Leitbündelverlaufs in einem jungen Zweige von Juniperus nana, auf der eben gelegten Zylinderfläche entworfen. Bei k, k die in die Achselsprosse tretenden Bündel. Nach GEYLER.

Fig. 114. Schematische Darstellung des Bündelverlaufs in einem jungen Zweige von Taxus baccata. Das Bündelrohr ist einseitig bei 1 längs aufgeschlitzt und in einer Ebene ausgebreitet.

Einem ganz anderen Typus folgt der Bündelverlauf bei den Monokotylen (Fig. 116). Hier befinden sich die einzelnen Blattspurstränge im Zentralzylinder ungleich weit von der Oberfläche des Stengels entfernt, sind also auf dem Stengelquerschnitte zerstreut. Diese Anordnung kommt dadurch zustande, daß das Dickenwachstum des Stengelvegetationspunktes nach Anlage der ersten medianen Bündel des Blattes noch längere Zeit anhält. Infolgedessen gelangen die später, und zwar nacheinander erzeugten Bündel der Blattflächen nicht so weit, und zwar verschieden tief nach innen. Besonders ausgeprägt kommt diese Anordnung bei den Palmen (Palmentypus) vor. Jede Blattspur besteht hier aus zahlreichen Strängen, die aus einem stengelumfassenden Blattgrund im ganzen Umkreise in den Stengel eintreten. Die in dem Blattgrund medianen Leitbündel (vgl. das Bild des medianen Längsschnittes durch den Stengel Fig. 116, in das für ein jedes Blatt A, B, C nur das mediane und ein seitliches Leitbündel eingezeichnet ist) dringen fast bis zur Mitte, die seitlich angrenzenden (a, b, c) immer weniger tief in den Zentralzylinder ein. In ihrem Abwärtsverlaufe nähern sich die Bündel langsam der Peripherie des Zentralzylinders, wo sie mit anderen verschmelzen. Die Zahl der Internodien, die jedes durchläuft, ist verschieden, für die medianen besonders groß.

Leitbündelbau[68]. Die Stengelbündel sind Gewebestränge von kreisrundem, breit- oder schmalelliptischem Querschnitte, und zwar sind es fast[S. 85] stets vollständige Leitbündel, d. h. solche Bündel, worin Sieb- und Gefäßstränge zu gemeinsamen Strängen verbunden sind (vgl. S. 58). Die Siebstränge, deren wichtigster Bestandteil die Siebröhren sind, bilden das Phloëm (den Siebteil), die Gefäßstränge mit den wasserleitenden Gefäßen das Xylem (den Gefäßteil) des Bündels. Die Stengelbündel können bei den einzelnen Kormophyten recht verschieden gebaut sein. In den Sproßachsen findet man alle die verschiedenen Bündeltypen, die sich in den Organen der Kormophyten überhaupt unterscheiden lassen, nämlich radiale, konzentrische und kollaterale Bündel. Diese Leitbündelformen unterscheiden sich voneinander durch die Anordnung und die Ausbildung ihrer Sieb- und Gefäßstränge.

Fig. 115. Clematis Viticella. Zweigende durch Entfernung der Oberfläche und Einwirkung von Kalilauge durchsichtig gemacht, den Verlauf der Blattspuren zeigend. Die austretenden Enden der Stränge infolge leichten Druckes etwas verschoben. Die jungen Anlagen der beiden obersten Blattpaare bl1 und bl2 noch ohne Blattspuren, v Vegetationskegel. Nach NÄGELI.

Fig. 116. Schematische Darstellung des Bündelverlaufs nach dem Palmentypus, innerhalb eines medianen Längsschnittes durch den Stengel in der Ebene der Blattmedianen. Zweizeilig alternierende, stengelumfassende Blätter sind vorausgesetzt. Die Blätter Aa, Bb, Cc sind nahe ihrer Basis abgeschnitten; die großen Buchstaben bezeichnen ihre Medianen. Oben der Stengel im Querschnitt. ROTHERT frei nach ROSTAFINSKI.

Im radialen Leitbündel (Fig. 117, vgl. auch Fig. 158, 160) gibt es mehrere Gefäß- und Siebstränge, die auf dem meist kreisrunden Bündelquerschnitt wie die Radien eines Kreises neben- und miteinander abwechselnd angeordnet sind und in Seitenansicht parallel zur Längsachse des Pflanzenteils verlaufen. Stoßen die Gefäßstränge im Zentrum des Leitbündels zusammen, so bilden sie eine sternförmige Querschnittsfigur; die Enden der Zacken werden von den engsten Gefäßen (den Gefäß- oder Xylemprimanen, vgl. dazu S. 90) eingenommen, während die Gefäße nach dem Zentrum des Bündels hin immer weiter werden (Fig. 117). In den Buchten zwischen den Zacken liegen die Siebstränge[S. 86] und in ihnen außen die engsten Siebröhren (die Sieb- oder Phloëmprimanen). Radiale Bündel, die für die Wurzeln bezeichnend sind, kommen in Sprossen freilich nur selten, und zwar stets in Einzahl, vor, z. B. in manchen Lycopodienstengeln.

Fig. 117. Radiales Leitbündel aus dem Stengel von Lycopodium Hippuris, p Phloëm, pp Phloëmprimanen, x Xylem, xp Xylemprimanen. Vergr. 30.

Fig. 118. Konzentrisches Leitbündel mit Außenxylem aus dem Wurzelstock von Convallaria majalis. ph Phloëm, x, t Xylem, s Xylemprimanen. Nach ROTHERT.

Fig. 119 Querschnitt durch ein konzentrisches Leitbündel aus dem Blattstiel des Adlerfarns (Pteridium aquilinum). sc Treppentracheïden, sp Xylemprimanen (Schraubentracheïden); in der Treppentracheïde sc* Stück einer leiterförmig verdickten schrägen Endwand, lp Xylemparenchym, v Siebröhren, s Phloëmparenchym, pr Phloëmprimanen, pp Stärkeschicht, e Endodermis. Vergr. 240. Nach STRASBURGER.
[S. 87]

Im konzentrischen Bündel wird ein zentraler Gefäß- oder Siebstrang allseits von einem hohlmantelförmigen Sieb- oder Gefäßstrang konzentrisch umgeben. Liegt das Xylem zentral, so kann man das Bündel als konzentrisch mit Innenxylem, liegt es dagegen außen, als ein solches mit Außenxylem bezeichnen. Konzentrisch mit Innenxylem sind die Bündel bei den meisten Farnen (Fig. 119) und bei bestimmten Dikotylen das Stengelbündel (viele Holzpflanzen). Konzentrisch mit Außenxylem sind sie z. B. in gewissen Erdsprossen und Stämmen von Monokotylen (Fig. 118); solchen Bau haben ferner die markständigen Bündel z. B. bei Piperaceen, Begonia, Campanula u. a.

Bei den Pteridophyten liegen die engsten Gefäße (die Gefäßprimanen) (sp) in dem Xylemstrang entweder gruppenweise peripher oder zentral oder zwischen den älteren Gefäßen. Die Gefäßstränge werden von einer Parenchymschicht (lp) umhüllt. Daran schließt im Umkreis der aus Siebröhren (v) und aus Parenchym (s) bestehende Mantel, an dessen Außenrand die engsten Siebröhren (die Siebprimanen) gelegen sind.

Im kollateralen Leitbündel endlich (Fig. 120 A), das auch nur einen Gefäßstrang und meist nur einen Siebstrang enthält, liegt der Gefäßteil neben oder besser hinter dem Siebteil, so daß Xylem und Phloëm sich nur einseitig berühren. Die Medianebenen solcher Bündel sind in den Stengeln immer radiär gerichtet, so daß diese Bündel im allgemeinen ihre Gefäßteile nach innen, ihre Siebteile nach außen kehren. Die engsten Gefäße (die Xylemprimanen) liegen im kollateralen Bündel gewöhnlich am Innenrande des Gefäßteiles (bezogen auf den Stengelquerschnitt), die Phloëmprimanen am Außenrande des Siebteiles. Solche kollaterale Leitbündel sind den Sprossen der Samenpflanzen und der Schachtelhalme eigentümlich. Doch kommen auch bikollaterale Leitbündel vor, die nicht nur außen, sondern auch innen einen Siebstrang besitzen, so in den Stengeln der kürbisartigen Gewächse (Cucurbitaceen). Die kollateralen Bündel sind bei den Monokotylen, wie die radialen und die konzentrischen Leitbündel, meist geschlossen, d. h. das ganze Bündel besteht aus Dauergewebe, und der Gefäßteil grenzt unmittelbar an den Siebteil (Fig. 120 A). Bei den Gymnospermen und Dikotylen sind sie dagegen meist offen, d. h. die Sieb- und die Gefäßteile bleiben dauernd durch eine Schicht meristematisches Gewebe, das Kambium der Bündel, getrennt (Fig. 121).

Bei sämtlichen Leitbündelformen bestehen die Gefäßstränge vor allem aus engen oder weiten, verholzten Elementen, die der Wasserleitung dienen: Tracheïden und Tracheen (Fig. 120 a, sp, m; Fig. 122 rp, sp, s, n, t) oder Tracheïden allein, die sämtlich einzeln für sich oder zu Gruppen ohne Interzellularen zwischen lebende, enge, langgestreckte und oft unverholzte Leitparenchymzellen, Xylemparenchym, eingebettet oder von ihnen in Form einer lückenlosen Scheide umgeben werden (Fig. 119 lp). Auch Sklerenchymfasern sind manchmal in den Gefäßsträngen vorhanden. Bei den Farnpflanzen sind sämtliche Gefäße ausschließlich als Tracheïden ausgebildet; in den Bündeln der Samenpflanzen kommen dagegen meist Tracheïden und Tracheen nebeneinander vor. In allen Bündeln (vgl. Fig. 122) sind die engsten Gefäße Ring- und Schraubengefäße, die übrigen aber meist Netz- und Tüpfelgefäße, bei den Pteridophyten, abgesehen von den Primanen, nur Treppengefäße (Fig. 70 A).

In den Siebsträngen der Leitbündel (Fig. 119 und 120) verlaufen die der Eiweißleitung dienenden Siebröhren (v). Sie sind stets von anderen lebenden Zellen begleitet, entweder nur von Geleitzellen (Fig. 120 s), die meist kürzer als die Siebröhrenglieder und mit diesen durch Siebplatten verbunden sind, oder von Geleitzellen und von anderen gestreckten Parenchymzellen (Phloëmparenchym) oder von letzteren allein (Fig. 119 s). Ist Phloëmparenchym vorhanden, so sind die Siebröhren einzeln oder gruppenweise lückenlos darin eingebettet.

[S. 88]

Fig. 120. A Querschnitt, B Längsschnitt durch ein geschlossenes, kollaterales Leitbündel aus dem Stengel von Zea mays. a Ring einer Ringtracheïde, sp Schraubentracheïde, m und m′ Tüpfeltracheen, v Siebröhre, s Geleitzelle. cpr und cp zerdrückte Phloëmprimanen, l Gefäßgang, vg Scheide. Vergr. 180. Nach STRASBURGER.
[S. 89]

Geleitzellen kommen nur den Siebröhren der Angiospermen zu. Sie sind Schwesterzellen der Siebröhrenglieder, gehen mit ihnen durch Längsteilung aus derselben Mutterzelle hervor, erfahren aber meist noch Querteilungen. Ihre Weite ist geringer als die der Siebröhrenglieder, sie zeichnen sich vor letzteren auch durch ihren reichlichen plasmatischen Inhalt aus. In einzelnen Fällen findet man im Phloëm auch Milchsaft- oder Schleimröhren.

Das vollständige Bündel ist seinerseits gewöhnlich noch von einer Bündelscheide mehr oder weniger umschlossen, die aus interzellularenfreiem Parenchym (oft reich an großen Stärkekörnern: Stärkescheide), aus Sklerenchym oder aus einer Schicht von Endodermiszellen (manchmal auch aus Kutisgewebe) bestehen kann. Sie wird nicht zum Leitbündel gerechnet. Die Scheiden dienen wohl vielfach dazu, die Stoffleitung auf die Bündel zu begrenzen. Scheiden aus Sklerenchym sind besonders häufig den Außenseiten der Siebteile als halbmondförmige Sklerenchymschicht (Fig. 120 A, 121 vg) vorgelagert und bei zerstreuter Bündelanordnung namentlich an den äußeren Leitbündeln ausgebildet.

Wo eine sklerenchymatische Scheide ein kollaterales Bündel umgibt, ist sie oft an jeder Seite des Bündels, an der Grenze von Gefäß- und Siebteil, durch parenchymatische oder schwächer verdickte und schwächer verholzte Elemente unterbrochen. Diese Stellen erleichtern den Austausch von Wasser und Nahrungsstoffen zwischen dem Bündel und dem Parenchym; sie werden als Durchlaßstreifen bezeichnet.

Fig. 121. Querschnitt durch das offene, kollaterale Leitbündel eines Ausläufers von Ranunculus repens. s Schraubentracheïden, m Tüpfeltracheen, c Kambium, v Siebröhren, vg Scheide. Vergr. 180. Nach STRASBURGER.
Um den Bau der Bündel und die Unterschiede zwischen den Leitbündeltypen vollständig zu verstehen, ist auch noch ein Einblick in ihre ontogenetische Entwicklung erforderlich. Die primären Leitbündel gehen aus Strängen langgestreckter Urmeristemzellen hervor. In ihnen vollzieht sich die Gewebesonderung nur allmählich, und zwar ungleichzeitig in den Zellen eines Stranges. Solange nämlich ein Pflanzenteil noch stark in die Länge wächst, bleiben die Stränge der Hauptmasse nach undifferenziert. Nur an engbegrenzten Stellen, die meist an den Rändern jedes Stranges gelegen sind, wandeln sich einzelne Zellenzüge in Dauergewebe um, und zwar auf Streckung oder Dehnung eingerichtete Elemente: ring- und schraubenförmig verdickte Tracheïden einerseits, Siebröhren oder Siebröhren nebst Geleitzellen andererseits.[S. 90] Diese Tracheïden werden deshalb als Erstlinge des Gefäßteils, Xylemprimanen (Protoxylem), die Siebröhren als Erstlinge des Siebteils, Phloëmprimanen (Protophloëm), bezeichnet. Erst nach vollendetem Längenwachstum des Pflanzenteils werden die Leitbündel fertiggestellt, wobei die Differenzierung der meristematischen Gewebe von den Primanen aus fortschreitet und im Gefäßteil nacheinander zuerst Ring-, dann Schrauben-, Netz-, schließlich Tüpfelgefäße ausgebildet werden (Fig. 120 B, 122). Die Xylemprimanen sind im fertigen Leitbündel vielfach zerdrückt, auch wohl durch Dehnung zerrissen (a und a′ Fig. 120 B, l; rp Fig. 122); in manchen Fällen ist ein lysigener, von Wasser erfüllter Interzellulargang („Gefäßgang“) an ihrer Stelle ausgebildet (Fig. 120 l), der aber noch der Wasserleitung dient[69]. Die Wände der Phloëmprimanen (Fig. 120 B, cp) sind im fertigen Bündel verquollen, ihre Siebplatten durch Kallusbeläge verschlossen.

Beim radialen Bündel schreitet die Ausbildung der Elemente entsprechend der Lage der Primanen in den Gefäß- und Siebsträngen von der Peripherie des Bündels nach dem Zentrum fort, beim kollateralen Bündel dagegen im Siebteil vom Außenrande, im Gefäßteile aber vom Innenrande des Bündels gegen die Mitte des Bündels; wird dabei alles Meristem aufgebraucht, so entsteht ein geschlossenes kollaterales Bündel, bleibt etwas davon erhalten, ein offenes. In den konzentrischen Bündeln vollzieht sich die Ausbildung des Phloëms und Xylems nicht nach einem einheitlichen Typus; dementsprechend ist die Lage der Primanen verschieden.

Fig. 122. Längsschnitt durch den Gefäßteil des kollateralen Leitbündels von Impatiens parviflora. rp Durch Längenwachstum des Stengels weit auseinander gerückte Ringverdickungen einer stark gedehnten Ringprimane; sp gedehnte Schraubenprimane; s Schrauben-, n Netz-, t Tüpfelgefäß. s, n, t erst nach Beendigung des Streckungswachstums ausgebildet. Vergr. 120.
Bündel, in denen man das Protoxylem am Innenrande des Xylems (wie bei den kollateralen und den konzentrischen Bündeln der Monokotylen) oder im Zentrum des Xylems (wie oft bei konzentrischen) findet, nennt man auch wohl endarch. Die Xylemprimanen können aber auch an anderer Stelle ausgebildet sein, z. B. am Außenrande des Xylems, exarch, wie beim radialen Bündel; oder in einer oder in mehreren Gruppen mesarch, d. h. zwischen Außen- und Innenrand des Gefäßteiles, z. B. in den Blattstielen der Cycadeen und im konzentrischen Bündel vieler Farne zwischen Peripherie und Zentrum des Xylems, also zwischen weitere Gefäße eingebettet.

Ob irgendwelche Beziehungen zwischen der Anordnung der Sieb- und Gefäßteile und den Leitungsbedürfnissen der Pflanzenteile bestehen, darüber wissen wir noch gar nichts[67],[68].

Fig. 123. Phylogenie der Leitbündeltypen, schematisch. Weiß: Rinde und Mark, schwarz punktiert: Phloëm, weiß punktiert auf schwarz: Xylem. Erklärung im Text.
Ebensowenig sehen wir über die Phylogenie der Bündeltypen klar. Allen Grund haben wir freilich zu der Annahme, daß ein Stengel mit einem einzigen zentralen Leitbündel als primitiv anzusehen ist. Ein solches finden wir in den Stengelteilen mancher lebender und ausgestorbener Farnpflanzen und in sämtlichen Wurzeln. Zu den einfachsten und phylogenetisch ältesten Leitbündeln dürfte das konzentrische Bündel mit einem soliden zentralen Xylemstrange gehören; wenigstens ist ein solches, wie es scheint,[S. 91] in den Keimsprossen fast aller lebenden Farne vorhanden (vgl. Fig. 123 A). Aber auch das radiale Bündel dürfte phylogenetisch sehr alt sein. Dafür spricht, daß es allen Wurzeln lebender und fossiler Kormophyten, soweit wir wissen, zukommt und daß es außerdem auch in den Stengeln einiger Kormophyten ausgebildet ist, während kein anderer Bündeltypus in Stengeln und Wurzeln sich findet. Die Vielförmigkeit, die man im Bau und in der Anordnung der Sproßbündel bei den Farnpflanzen im Gegensatz zu den Samenpflanzen findet, erlaubt auch Vermutungen darüber, wie aus einem Stengel mit einem konzentrischen Bündel Stengel mit anderem Bau entstanden sein können. Einmal nämlich finden wir Formen (Fig. 123 B), bei denen der Gefäßteil des einzigen zentralen Bündels zu einem Hohlzylinder mit zentralem Strang von Parenchym („Mark“) geworden ist (Gleicheniaceen, Schizaeaceen), weiter solche (Fig. 123 C), wo auf den Xylemhohlzylinder noch ein innerer Phloëmmantel und dann erst ein Mark folgt (z. B. Marsilia); endlich solche (Fig. 123 F), bei denen dieses Bündelrohr von rhombischen Lücken, den Blattlücken (d. h. den Ausgangsstellen der Blattbündel), zu einem netzartigen Maschenwerk durchbrochen ist (z. B. Aspidium Filix mas). In diesem Falle findet man auf dem Stengelquerschnitte einen Kranz von zahlreichen, übrigens typisch gebauten konzentrischen Bündeln, jedes mit einem soliden, zentralen Xylemstrange. Ferner kommen aber auch Formen vor (Fig. 123 D), bei denen in dem zentralen, konzentrischen, markhaltigen Bündel der an das Mark anschließende Xylemhohlzylinder in eine Anzahl nebeneinander liegender, längs verlaufender Xylemstränge aufgelöst ist, die durch radiale Parenchymplatten voneinander getrennt und von einem geschlossenen Phloëmaußenmantel umhüllt werden (z. B. Osmunda). Und schließlich gibt es Formen (Fig. 123 E), bei denen auch dieser Phloëmmantel noch in entsprechende Stränge zerlegt ist, so daß die radialen Parenchymplatten als „Markstrahlen“ die nunmehr kollateralen Xylem-Phloëmstränge völlig voneinander trennen (Rhizom von Ophioglossum). Diese Reihen zeigen uns, wie aus einem zentralen konzentrischen Bündel durch Zerteilung erstens ein netzartiges Bündelrohr, das im Querschnitt aus vielen konzentrischen, kreisförmig angeordneten Bündeln besteht, zweitens ein Hohlrohr aus kollateralen Bündeln entstehen kann. Nimmt man an, daß die phylogenetische Entwicklung sich in dieser Weise vollzogen hat, so würde also nicht ein kollaterales Bündel der Samenpflanzen oder eines der vielen konzentrischen Bündel, die man auf den Stengelquerschnitten vieler Farne findet, dem einen zentralen konzentrischen Bündel „primitiv gebauter“ Farnpflanzen homolog sein, sondern die Gesamtheit aller kollateralen oder konzentrischen Bündel im Stengel, d. h. also der Zentralzylinder wäre homolog zu setzen dem einen zentralen konzentrischen oder radialen Leitbündel. Bezeichnet man nach dieser Auffassung, der Stelärtheorie[70], das radiale Bündel oder das einzige zentral gelegene konzentrische Bündel als Stele, so hätte die Gesamtheit der konzentrischen oder kollateralen Bündel, die zu einem Bündelrohr verbunden sind, samt dem umschlossenen Mark ebenfalls als Stele zu gelten, da sie ja aus[S. 92] der Urstele entstanden gedacht ist. Danach kann also ein „Einzelbündel“ eine ganze Stele oder nur ein Teil einer solchen sein. Die Stele (der Zentralzylinder) der Samenpflanzen liegt gewöhnlich als zentraler Gewebestrang im Stengel (Monostelie). Doch kommen auch Fälle vor, wo er in mehrere Teilzylinder zerlegt ist (Polystelie), so in den Stengeln der Aurikeln und von Gunnera.

γ) Die Blätter[71]. 1. Anlage der Blätter. Wir sahen die Blattanlagen am Vegetationspunkte des Sprosses exogen als seitliche Höcker oder Wülste auftreten (Fig. 98, 102 f), die zunächst ungegliedert sind. Man kann sie als Blattprimordien bezeichnen (Fig. 127 A, b). Gewöhnlich nimmt eine Blattanlage nur einen Teil des Vegetationspunktumfanges ein; doch kommt es auch vor, daß sie als ringförmiger Wall den ganzen Vegetationspunkt umfaßt. Auch die Anlagen mehrerer quirlständiger Blätter können zunächst als einziger ringförmiger Wall auftreten und sich erst weiterhin sondern; entstehen sie sogleich als selbständige Anlagen, so bilden sich diese entweder gleichzeitig oder in der Regel[65], [114] nacheinander aus.

In freilich seltenen Fällen kann ein Blatt auch terminal am Vegetationspunkte entstehen.

Fig. 124. Ahorn (Acer platanoides). A Außenansicht einer Knospe mit zwei Blattanlagen, zwischen denen der Vegetationskegel des Sprosses zu sehen ist. In sp die Blattspreite, an der fünf Abschnitte angelegt sind, von denen der oberste Abschnitt zuerst ausgebildet wurde. In st die Zone, durch deren Wachstum der Blattstiel später entstehen soll. B Älteres Blatt von der Seite, die Stränge in seinem Innern stellen die Leitbündelanlagen vor, die später äußerlich die Nervatur bestimmen sollen. C Ausgewachsenes Blatt mit schematischer Darstellung des Leitbündelverlaufs. D Querschnitt durch den basalen Teil einer Knospe, mit je drei Bündelanlagen in jedem Blatt. E höher geführter Querschnitt durch eine Knospe, die Zahl der Bündelanlagen durch Verzweigung innerhalb der Blätter vermehrt. A, B und E schwach vergrößert. Nach DEINEGA aus Goebels Organographie.
Während der Sproß im allgemeinen mittels seines Vegetationspunktes unbegrenzt, und zwar an der Spitze weiterwächst, ist das Wachstum der Blattanlagen, die meist nur kurze Zeit an ihrer Spitze wachsen, in der Regel begrenzt. Ausgesprochenes und langdauerndes Scheitelwachstum zeichnet dagegen z. B. die Blätter der Farne aus. Ist das Wachstum begrenzt, so wird die Spitze, die in ihrer Entwicklung dem übrigen Blatte voranzueilen pflegt, zuerst in Dauergewebe umgewandelt. Das geschieht zum Schutze der jüngsten Knospenteile, den die Blätter zunächst zu übernehmen haben, wie wir schon sahen. Das weitere Wachstum des Blattes vollzieht sich in der Regel durch Streckung interkalar, und zwar meist so, daß von der Spitze nach der Basis fortschreitend das Blattmeristem in Dauergewebe übergeht, das Wachstum also am längsten und stärksten in der Blattbasis bis zur fertigen Ausgestaltung des Blattes fortdauert.

[S. 93]

Besonders auffällig ist das Vorauseilen in der Ausbildung der Blattspitzen bei verschiedenen tropischen Gewächsen, besonders Kletterpflanzen. Dort fällt diesen Blattspitzen nach M. RACIBORSKI, der sie Vorläuferspitzen nennt, die Aufgabe zu, vor der Fertigstellung des Blattes schon die Funktionen der Blattspreite zu übernehmen.

Sehr eigenartig und abweichend von allen anderen Kormophyten verhält sich Welwitschia mirabilis. Sie bildet über den Keimblättern nur ein einziges Paar von Laubblättern, deren basale Zonen in jährlicher Periode einen Zuwachs erfahren, während die Blattenden allmählich verwittern.

2. Verschiedene Ausgestaltung der Blätter. Die Blätter des Sprosses haben sehr verschiedene Funktionen und werden dementsprechend an einem und demselben Stengel ganz verschieden ausgebildet, obwohl sie alle der Anlage nach gleich angelegt sind. Den Wechsel in der Ausbildung aufeinanderfolgender Blätter am Stengel bezeichnet man als seine Blattfolge.

Fig. 125. Maiblume (Convallaria majalis). nd Niederblätter, lb Laubblätter, hb Hochblätter, b Blüte, ws Wurzelstock, aw Adventivwurzeln. Etwas verkleinert. Nach SCHENCK..

Fig. 126. Vogelkirsche (Prunus avium). Knospenschuppen 1–3 und die Übergangsformen 4–6 zum Laubblatt 7, sp Blattspreite, s Stiel, nb Nebenblätter. Etwas verkleinert. Nach SCHENCK.

Der Hauptsproß der Keimpflanze trägt zu unterst die Keimblätter oder Kotyledonen, die der Keimstengel, das Hypokotyl (Fig. 155), eines Keimes schon im Samen besitzt. Nur ein einziges solches Blatt kommt bei den Monokotylen vor; zwei Keimblätter sind bei den Dikotylen(Fig. 155) und bei manchen Gymnospermen, mehr als zwei bei anderen Gymnospermen vorhanden. Auf die Keimblätter folgen an den Erdsprossen und oft auch an den Luftsprossen mehr oder weniger schuppenförmige Niederblätter (Fig. 125 nd), an den Luftsprossen hierauf die Laubblätter (lb) und weiter oben wieder einfacher gestaltete Hochblätter (hb). Wir wollen zunächst die Laubblätter betrachten, da die übrigen Blätter nur Umbildungen von ihnen sind.

A. Die Laubblätter. Die Laubblätter sind äußerlich recht verschieden gebaut. Ihre Gestalt und ihre Gliederung werden deshalb bei der[S. 94] Diagnose der Pflanzen häufig verwertet. Meist ist das Laubblatt gegliedert, und zwar in die lebhaft grüne, flächenförmige und sehr dünne Blattspreite (Lamina, Fig. 126 sp), meist ungenau Blatt genannt, in den stengelartigen Blattstiel (Petiolus, Fig. 126 s) und an seiner Basis in den Blattgrund. Dieser kann als Blattpolster (Blattkissen) oder als Blattscheide (Vagina, Fig. 138 v) ausgebildet sein, die den Stengel oberhalb des Blattknotens mehr oder weniger umhüllt oder Nebenblätter (Stipulae, Fig. 126 nb) ausgliedert. Bei vielen Blättern fällt der Blattgrund aber nicht durch besondere Form und Größe auf, sondern geht allmählich in den Blattstiel über, oft auch in die Nebenblätter (Stipulae, nb). Fehlt der Stiel, so heißt das Blatt sitzend; ist er vorhanden, gestielt. Die Anfänge der Blattgliederung pflegen sich an den Laubblattanlagen schon sehr frühzeitig bemerkbar zu machen: die Primordialblätter sondern sich sehr bald, nachdem sie als Wülste am Vegetationspunkte sichtbar geworden sind, in das Oberblatt (Fig. 127 A und B, o) und in den Blattgrund (A und B, g). Aus dem Oberblatte geht die Blattspreite (Fig. 124 A, sp) und, wo vorhanden, auch der Blattstiel hervor (A, st). Dieser wird erst nachträglich, verhältnismäßig spät, durch interkalares Wachstum zwischen die schon vorhandene Blattspreite und den Blattgrund eingeschaltet, ist also niemals direkt am Stengel befestigt.

a) Die Blattspreite. Äußerer Bau (Fig. 129). Die in der Regel ausgesprochen dorsiventrale, oberseits meist dunkler grün gefärbte Blattspreite kann ungeteilt oder geteilt (Fig. 124 C), ja sogar aus Teilblättchen zusammengesetzt sein. Solche zusammengesetzten Blätter entstehen entweder durch Verzweigung aus den Rändern der Anlagen (Fig. 124 A) oder in seltenen Fällen (z. B. Palmen) durch Zertrennung der jugendlichen unverzweigten Spreiten bei ihrer Entfaltung. Den Monokotylen kommen vorwiegend einfache Blätter zu, während die zusammengesetzten bei Dikotylen häufig sind.

Fig. 127. Blattentwicklung bei der Feldulme (Ulmus campestris). A Der Vegetationskegel v, mit zwei Blattanlagen. Die jüngste Blattanlage b noch ungegliedert, die nächstältere gegliedert in Oberblatt o und Blattgrund g. B Das ältere Blatt von A, schräg von außen gesehen. Vergr. 58. Nach STRASBURGER.
Die Blattspreite heißt schildförmig, wenn der Blattstiel in ihrer Mitte zu entspringen scheint (Fig. 241). An der ungeteilten Spreite (Fig. 125 lb, 126 sp) ist der Rand nicht oder nur seicht eingeschnitten; er kann gesägt, gezähnt, gekerbt oder ausgeschweift sein. Sind tiefere Einschnitte vorhanden, so heißt das Blatt, wenn sie nicht bis zur Mitte der Spreitenhälften reichen, gelappt; wenn sie bis zu ihrer Mitte gehen, gespalten (Fig. 140 sb); wenn sie darüber hinaus sich fortsetzen, geteilt (Fig. 142 l). Nur wenn die einzelnen Abschnitte der Spreite so selbständig sind, daß sie als gesonderte Teilblättchen, kurz Blättchen genannt, an dem gemeinsamen Blattstiel oder an der ursprünglichen Mittelrippe der Spindel eingefügt sind, heißt das Blatt zusammengesetzt (Fig. 141, 1–5); in allen anderen Fällen gilt es als einfach. Die Teilung der Spreite ist fingerartig (Fig. 142) oder fiederartig (Fig. 141, 1–5), je nachdem die Einschnitte gegen den Grund der Spreite zusammenlaufen oder gegen deren Mittelrippe gerichtet sind.

Die Blättchen eines zusammengesetzten Blattes können während ihrer Entwicklung ähnlich wie die Anlage gegliedert werden, aus der sie hervorgingen; und an ihren Teilen kann sich die nämliche Erscheinung wiederholen. Alsdann spricht man von doppelt, dreifach und mehrfach zusammengesetzten Blättern. Häufig sind einfach und doppelt gefiederte (Fig. 141) Blätter, deren Blättchen beiderseits an Spindeln erster oder zweiter Ordnung eingefügt sind. Die Blättchen eines zusammengesetzten Blattes können ganzrandig oder mehr oder weniger tief eingeschnitten sein. Sie sitzen unmittelbar der Spindel an, oder[S. 95] sie sind gestielt und unter Umständen sogar, wie z. B. bei Phaseolus (Fig. 135 fg), Robinia, Mimosa, mit angeschwollenen „Gelenkpolstern“ an den Einfügungsstellen versehen.

An Spreitenanlagen, die nicht einfach bleiben, vielmehr während ihrer weiteren Entwicklung sich mehr oder weniger verzweigen, werden die seitlichen Abschnitte meist in basipetaler Richtung, also von der Spitze gegen die Basis fortschreitend, angelegt (Fig. 124 A); doch ist auch eine entgegengesetzte, akropetale Entwicklungsrichtung oder eine Kombination von beiden nicht ausgeschlossen.

Die gelappten und oft auch durchlöcherten Blattspreiten der Aracee Monstera kommen dadurch zustande, daß an den jugendlichen Blättern inselartige Gewebemassen zwischen den Rippen absterben und sich herauslösen. Auch die Abschnitte der fächerförmigen und fiederförmigen Palmenblätter entstehen durch nachträgliche Zertrennung der Blattspreiten, und zwar in der Weise, daß innerhalb der ungeteilt angelegten und gefalteten jugendlichen Blattspreiten vor deren Entfaltung entweder Gewebestreifen an den Oberkanten der Falten absterben oder die Zellwände hier verschleimen und sich voneinander trennen (so z. B. bei Cocos und Chamaerops)[72].

Die Blattspreiten ungestielter Blätter sitzen meist mit breiter Basis an dem Stengel. Greift diese Basis jederseits noch um den Stengel, so ist das Blatt stengelumfassend: z. B. bei Papaver somniferum; umgibt sie geschlossen den Stengel, dann heißt es durchwachsen (Bupleurum-Arten). Sind die Spreiten zweier gegenüberstehender Blätter am Grunde verbunden, dann sind sie verwachsen (Lonicera caprifolium). Setzt sich die Spreite abwärts am Stengel flügelartig fort, so wird das Blatt als herablaufend bezeichnet (Verbascum thapsiforme).

Fig. 128. Blatt des Rotdorns (Crataegus) mit Netznervatur. 3⁄4 nat. Gr. Nach NOLL.

Fig. 129. Schematisches Bild eines dorsiventralen Laubblattes. Bei A in Flächenansicht. Bei B im Querschnitt. ss Die Symmetrieebene (Mediane). Nach STRASBURGER.

Die Blattspreiten sind von meist heller grünen Nerven (Adern) durchzogen, die ein reichverzweigtes Netzwerk bilden. Diese Blattnerven springen mit ihren dickeren Ästen (den Rippen) gewöhnlich auf der Blattunterseite mehr oder weniger hervor, während ihnen auf der Oberseite oft Furchen entsprechen. Die feineren Verästelungen werden erst sichtbar, wenn man die Spreite im durchscheinenden Lichte betrachtet. Vielfach ist ein in der Mediane der Spreite verlaufender Nerv besonders kräftig entwickelt; er heißt Mittelnerv oder Hauptnerv. Es können aber auch mehrere gleich starke Nerven als Hauptnerven ausgebildet sein (Fig. 124). Von allen solchen Nerven entspringen Seitennerven (Fig. 128).

Die Benennung der Nervatur richtet sich nach der Art des Nervenverlaufs. Die Blätter der meisten Nadelhölzer sind einnervig. Bei mehrnervigen Blättern stellt die gabelige Nervatur einen besonderen Typus dar, wobei ein Mittelnerv nicht zustande kommt. Sie ist für verschiedene Farne, außerdem für Ginkgo biloba bezeichnend. Im übrigen unterscheidet man bei den mehrnervigen Blättern die streifige Nervatur, bei der mehrere Hauptnerven annähernd parallel oder im Bogen in der Längsrichtung der[S. 96] Spreite verlaufen (Fig. 138 s) und gegen deren Ende zusammenneigen, und die netzartige Nervatur (Fig. 128), bei der die Nerven, an Stärke abnehmend, auseinander entspringen und schließlich in einem feinen Maschenwerk ihren Abschluß finden. Aber auch bei streifiger Nervatur pflegen die Hauptnerven durch schwache Quernerven (Anastomosen) verbunden zu sein. Bei netzartiger Nervatur unterscheidet man weiter zwischen fiedernervigen Blättern (Fig. 128), wenn einem medianen Hauptnerven schwächere Seitennerven entspringen, und handnervigen Blättern (Fig. 124, 140 sb), wenn mehrere annähernd gleich starke Hauptnerven an der Basis der Spreite auseinandergehen. Die streifige Nervatur kennzeichnet im allgemeinen die Monokotylen, die netzartige einige Farne und die meisten Dikotylen.

Innerer Bau. Der innere Bau der Laubblätter ist sehr mannigfaltig, aber meist ausgesprochen dorsiventral (bifazial): die Gewebe auf der Oberseite sind anders ausgebildet als auf der Unterseite (Fig. 129, 132).

Viele Blätter, besonders solcher Arten, die stark besonnte, verhältnismäßig trockene Standorte bewohnen, doch z. B. auch vieler submerser Wasserpflanzen, sind aber oben und unten gleich, also isolateral (äquifazial, zentrisch) gebaut (Fig. 185, 191).

a) Nerven. Sie enthalten in Ein- oder Mehrzahl die Leitbündel der Blätter. Die reiche Verzweigung, die Ausbildung der Leitbündel als ein sehr feines Netzwerk, das sich über die ganze Blattspreite ausdehnt, ist für die Blattspreiten besonders bezeichnend. Es läßt sich durch Mazeration der Blätter als sehr zierliches Blattskelett isolieren.

Der Bau der Leitbündel in der Blattspreite entspricht meist dem im Stengel. Bei den Phanerogamen sind die Blattbündel gewöhnlich kollateral. Da sie die Fortsetzungen der Blattspurbündel des Stengels sind, so wenden sie ihren Gefäßteil nach oben, ihren Siebteil nach unten.

Das Xylemparenchym der Blattbündel ist meist zu Platten angeordnet, die auf den Bündelquerschnitten als radiale Zellreihen im Gefäßteile erscheinen.

Im dem Maße, wie die Bündel sich in der Blattspreite mehr und mehr verzweigen und schwächer werden, vereinfacht sich ihr Bau. Zunächst schwinden die Tracheen; nur netz- und schraubenförmig verdickte Tracheïden bleiben als wasserleitende Bahnen im Gefäßteile zurück. Zugleich wird der Siebteil reduziert. Bei den Angiospermen, deren Siebröhren von Geleitzellen begleitet werden, nehmen die Siebröhren an Weite ab, während die Geleitzellen ihren früheren Durchmesser behalten. Schließlich unterbleibt in den Zellen, die Siebröhren fortsetzen, die Teilung in Siebröhrenglieder und Geleitzellen: es werden Übergangszellen gebildet. Mit diesen hört der Siebteil auf, während der Gefäßteil noch durch kurze Schraubentracheïden vertreten ist und schließlich blind endigt (Fig. 130).

Fig. 130. Leitbündelendigung im Blatt von Impatiens parviflora. Vergr. 240. Nach SCHENCK.
Den Nadeln der Koniferen, die meist nur von 1–2 medianen längs verlaufenden Leitbündeln durchzogen werden, fehlen alle feineren Bündelverzweigungen. Den Außenrändern des Xylems folgt ein Saum eigenartiger, toter, tracheïdaler Zellen mit Hoftüpfeln, den Außenrändern des Phloëms ein entsprechender Saum eiweißreicher Zellen. Dieses Transfusionsgewebe, das mehr oder weniger tief in das lebende Blattgewebe beider Blatthälften eindringt, vermittelt bei den Koniferen offenbar den Stoffverkehr zwischen Nerv und diesem Blattgewebe.

Die Leitbündel werden von Parenchymscheiden umgeben, die in den dickeren Nerven vielschichtig sind, einschichtig aber selbst ihre feinsten Verzweigungen umschließen. Die Zellen dieser Scheiden sind meist gestreckt[S. 97] und stets lückenlos verbunden. Den Leitbündeln folgen auf einer oder beiden Seiten (Fig. 131, 1) häufig auch Stränge von Sklerenchymfasern. Sie bilden namentlich an den Siebteilen der stärkeren Bündel im Querschnitte sichelförmige Beläge, veranlassen vorwiegend das Vorspringen der Blattrippen an der Spreitenunterseite und machen die Spreite biegungsfest. Stränge aus Sklerenchym kommen bei manchen Blättern auch zwischen den Nerven vor (Fig. 131, 1), ferner auch am Blattrande; solche sklerenchymatischen oder kollenchymatischen Verstärkungen des Randes dienen zum Schutze gegen scherende Kräfte, die die Blattflächen zu zerreißen suchen (Fig. 131, 2). Große Blattspreiten, denen ein solcher Schutz am Rande fehlt, werden im Freien vom Winde zerfetzt (Banane).

b) Epidermis und Mesophyll. Das Laubblatt wird allseits von einer typischen Epidermis umschlossen. Sie ist auf der Blattunterseite besonders reich an Spaltöffnungen, die der Oberseite nicht selten ganz fehlen (z. B. bei fast allen Laubbäumen).

Fig. 131. Blatt der Liliacee Phormium tenax (des neuseeländischen Flachs). 1 Blattquerschnitt. Sc Sklerenchymplatten und -stränge. A Grünes Assimilationsparenchym. H Epidermis (Wasserspeicher). W Farbloses Mesophyll (innere Wasserspeicher). 2 Randpartie desselben Blattes. E Stark verdickte und gebräunte Epidermis. R Randbündel aus Sklerenchymfasern. Nach NOLL.

Fig. 132. Querschnitt durch das Blatt der Buche (Fagus silvatica). ep Epidermis der Oberseite, ep″ Epidermis der Unterseite, ep‴ längsgestreckte Epidermiszellen über einem der Leitbündel, die der Querschnitt durch das Blatt der Quere nach trifft, pl Palisadenparenchym, s Trichterzellen, sp Schwammparenchym, k kristallführende Sekretzellen, k′ eine Kristalldruse, st Spaltöffnung. Vergr. 360. Nach STRASBURGER.
Man findet an der Unterseite durchschnittlich 100–300 Spaltöffnungen auf dem Quadratmillimeter; doch kann diese Zahl in einzelnen Fällen bis über 700 steigen. Isolaterale Blätter pflegen auf beiden Seiten, Schwimmblätter nur oberseits Spaltöffnungen zu besitzen.

Die Blattepidermis kann auch ein Wasserspeicher sein. Besonders in diesem Falle ist sie nicht selten mehrschichtig.

[S. 98]

Das von der Epidermis umschlossene Gewebe der Blattspreite zwischen den Rippen besteht hauptsächlich aus Parenchym, das man als Mesophyll bezeichnet. Darin sind die feineren Nervenäste eingebettet. Auf die Epidermis der Oberseite (Fig. 132 ep) pflegen eine bis drei senkrecht zur Oberfläche gestreckte Lagen zylindrischer (schlauchförmiger) Parenchymzellen zu folgen, die Palisadenzellen (pl). Sie sind besonders chlorophyllreich, bilden also ein Assimilationsparenchym und sind meist seitlich voneinander durch enge Interzellularen getrennt. Oft neigen die Palisadenzellen mit ihren unteren Enden deutlich zu Büscheln zusammen (Fig. 132) und schließen an trichterförmig erweiterte Zellen (die Trichterzellen s) an.

Die Dicke der Palisadenschicht ist bei den Blättern mancher Bäume, z. B. der Rotbuche, verschieden: in den „Schattenblättern“ viel geringer als in den „Sonnenblättern“. Ein direkter Einfluß der Belichtung liegt da aber nach den Untersuchungen NORDHAUSENs[73] nicht vor. Es gibt auch Pflanzen (z. B. Lactuca scariola), die nur in stark beleuchteten Laubblättern Palisaden ausbilden.

In manchen Blättern kommen an Stelle der Palisadenzellen Schichten von Zellen vor, deren Elemente nicht senkrecht, sondern parallel zur Oberfläche, längs oder quer gestreckt sind, so z. B. bei vielen Monokotylen. In den Nadeln der Kiefer und bei anderen Pflanzen findet man ferner an Stelle der Palisaden große plattenförmige Zellen, deren innere Oberfläche durch Einfaltungen der Zellmembran bedeutend vergrößert ist (Faltenparenchym, Fig. 133 A, B fp, C).

An das Palisadenparenchym schließt ein viel chlorophyllärmeres Parenchym aus vorwiegend unregelmäßig gestalteten Zellen mit weiten Interzellularen an, das Schwammparenchym (Fig. 132 sp), das bis an die Epidermis der Unterseite (ep″) reicht. Die weiten Interzellularen stehen mit den Spaltöffnungen in der Epidermis der Blattunterseite in unmittelbarer Verbindung und dienen dem Gastransport zu den Palisadenzellen.

Fig. 133. Nadel von Pinus silvestris quer und längs. A Querschnitt, B medianer Längsschnitt. Vergr. 160. e Epidermis, st Spaltöffnung darunter, fp Assimilationsfaltenparenchym, h Harzkanäle, das dünnwandige Drüsenepithel (el) von einer Sklerenchymscheide umgeben. C Stück der Zellmembranen aus dem Faltenparenchym. Vergr. 380.
HABERLANDT berechnet für einen Quadratmillimeter Blattfläche bei Ricinus communis durchschnittlich im Palisadenparenchym der Oberseite 403200, im Schwammparenchym der Unterseite 92000 Chlorophyllkörner. Somit würden in diesem Falle 82% der Chlorophyllkörner der Blattoberseite, 18% der Blattunterseite angehören.

Nicht selten liegt auch im Mesophyll farbloses Wassergewebe (Fig. 131 W).

Epitheme und Wasserspalten[74]. Bei gewissen Familien der Mono- und Dikotylen bildet das Mesophyll der Blattlamina lokal zwischen besonders angeschwollenen[S. 99] Leitbündelendigungen und der Epidermis eigenartige Gewebepfropfen aus. Sie bestehen aus kleinen lebenden Zellen mit farblosem Zellsaft, die mit Wasser gefüllte Interzellularen zwischen sich lassen. Diese Gewebepfropfen nennt man Epitheme. Sie vermitteln die Ausscheidung von Wasser in tropfbar flüssiger Form. Dabei verhalten sie sich der Hauptsache nach passiv; sie sind nur Stellen geringsten Filtrationswiderstandes. Über solchen Epithemen, in die Tracheïden münden, liegen in der Epidermis eigenartig ausgebildete Spaltöffnungsapparate: die Wasserspalten (Fig. 134), die größer als die Luftspalten sind. Ihre beiden Schließzellen sind entweder lebend und können den Spalt, gleich den Luftspalten, öffnen und schließen, oder sie verlieren (in anderen Fällen) frühzeitig den lebenden Inhalt; der Spalt zwischen ihnen steht dann unverändert weit offen. Die für die Schließzellen der Luftspalten so bezeichnenden Verdickungsleisten werden bei den Wasserspalten gewöhnlich nicht ausgebildet. Die ausgeschiedene Flüssigkeit ist oft reich an kohlensaurem Kalke, der alsdann, wie an den Blatträndern vieler Steinbrech- (Saxifraga-) Arten, in weißen Schüppchen die Wasserspalten überdeckt.

Vielfach haben junge Blätter an ihren Spitzen und den Spitzen ihrer Zähne über Epithemen Wasserspalten, die am fertigen Blatte vertrocknet sind. Selbst bei submersen Pflanzen, bei denen keine Luftspalten ausgebildet werden, kommen an den Blattspitzen nicht selten Wasserspalten vor. Sie pflegen frühzeitig abzusterben, werden auch wohl mit dem angrenzenden Gewebe zerstört, so daß offene Grübchen, die Apikalöffnungen, entstehen, durch die Wasser und darin gelöste Stoffe hervorgepreßt werden.

Auch in vielen Nektarien innerhalb und außerhalb der Blüten wird die zuckerhaltige Flüssigkeit aus Wasserspalten („Nektarspalten“) ausgeschieden.

Funktionen der Blattspreiten. Die Blattspreiten sind, wie schon gesagt, die wichtigsten Ernährungs-, d. h. Assimilations- und zugleich die Transpirationsorgane der Kormophyten. Ihr äußerer und innerer Bau, ihre Anordnung und ihre Richtung zum Lichteinfall entsprechen diesen Funktionen. Die Zerlegung der Kohlensäure ist an das Licht, außerdem an das grüne Chlorophyll gebunden. So versteht man die grüne Farbe, die in der Regel sehr große Oberflächenentwicklung der Blattspreiten, ihre bei geringer Dicke flächenförmige Ausbildung und ihren meist dorsiventralen Bau. Je größer die Oberfläche ist, um so mehr chlorophyllhaltige Zellen werden ohne gegenseitige Beschattung dem Lichte ausgesetzt, um so leichter kann die Kohlensäure aus dem spärlichen Vorrate der Luft aufgenommen werden, und um so lebhafter wird zugleich die Verdunstung der Spreite, ihre Transpiration, sein müssen. Da schon wenige chlorophyllreiche Zellschichten das von außen in das Blatt einströmende Licht so verändern, daß es in tieferen Schichten der Kohlensäurezerlegung nicht mehr ausreichend zu dienen vermag, so ist das Assimilationsgewebe vorzugsweise oberseits gelegen. Die Kohlensäure der Luft wird aber hauptsächlich von der Unterseite des Blattes durch die Spaltöffnungen aufgenommen; infolgedessen kann sie um so schneller durch die weiten Interzellularen des Schwammparenchyms, das im wesentlichen ein Durchlüftungsgewebe ist, zu den assimilatorisch besonders tätigen oberen Gewebeschichten vordringen, je dünner das Blatt ist.

Fig. 134. Wasserspalte am Blattrande der Kapuzinerkresse (Tropaeolum majus) nebst angrenzenden Epidermiszellen. Vergr. 240. Nach STRASBURGER.
Das reich verzweigte Leitbündelnetz ermöglicht es, die Assimilate von allen Teilen des Blattes schnell nach den Stengeln abzuleiten, nachdem sie[S. 100] aus den Mesophyllzellen zu den feineren Verästelungen des Nervennetzes hingeschafft worden sind; zugleich versorgt es durch seine feine Zerteilung, die im Gegensatze zu dem wasserleitenden Stengel für die wasserabgebende Blattspreite bezeichnend ist, auf kürzestem Wege alle Teile der transpirierenden Blattspreite mit Wasser. Schließlich erhöht die Aderung auch noch die Festigkeit der Spreite.

Wie wir sahen, sind die Blätter am Stengel so angeordnet, daß die Blattspreiten, die an aufrechten Sprossen nahezu horizontal stehen, ohne allzu starke gegenseitige Beschattung dem Lichte möglichst ausgesetzt werden. Viele Blätter besitzen außerdem Bewegungsvermögen und können ihre Spreiten gegen das einfallende Licht einstellen. Häufig, so namentlich an dorsiventralen plagiotropen Zweigen, fügen sich die Blattspreiten, die sämtlich ihre Oberseiten gegen das Licht wenden, bei Betrachtung von oben mehr oder weniger dicht zu einem Blattmosaïk aneinander.

b) Der Blattstiel ist meist stengelartig ausgebildet. Sein innerer Bau gleicht alsdann dem der Hauptrippe der Spreite oder wohl auch der Sproßachse. Die Leitbündel sind jedoch bei den Angiospermen oft in einem nach oben offenen Bogen angeordnet; typisches Assimilationsgewebe fehlt dem Stiele ganz. Der Blattstiel dient dazu, die Blattspreite von der Stengelachse weg in den Raum hinaus, also dem Licht entgegen zu strecken. Sind Blattstiele vorhanden, so führen Teile von ihnen auch meist die Einstellung der Spreiten gegen das Licht aus.

Fig. 135. Unpaarig gefiedertes Blatt von Phaseolus mit Blattstielgelenken (Polstern). hg Polster des Blattstiels (Hauptgelenk), fg Gelenk eines der Fiederblätter. 1⁄4 nat. Gr.
Manchmal werden die Einstellungsbewegungen durch besondere örtliche Anschwellungen an der Basis oder an der Spitze oder an beiden Stellen des Blattstieles ausgeführt, die wie Gelenke arbeiten: Blattkissen oder Blattpolster, so besonders bei vielen Leguminosen (Fig. 135).

An den Jahrestrieben der Holzgewächse kommt das Blattmosaïk außer durch die Blattbewegungen nicht selten auch durch die verschiedene Länge der Blattstiele (und durch die verschiedene Größe der Blattspreiten) zustande: die unteren Blätter haben viel längere Stiele (und größere Spreiten) als die oberen; so sehr auffallend z. B. beim Ahorn oder der Roßkastanie. Auch bei solchen Gewächsen, bei denen die Laubblätter eine Rosette bilden, kann man dies beobachten, so besonders schön an den schwimmenden Rosetten der Wassernuß (Trapa natans).

Gestielte Blattspreiten, die bei den Dikotylen weit häufiger als bei den Monokotylen sind, setzen sich von den Blattstielen entweder scharf ab, oder sie laufen an ihnen herab, so daß die Stiele geflügelt erscheinen.

c) Der Blattgrund[75]. Ist der Blattgrund des Laubblattes in besonderer Weise ausgebildet, so trägt er meist zum Schutze der Knospe und des nächst jüngeren Blattes dadurch bei, daß er auch dann noch die Knospe umhüllt, wenn die Blattspreite sich von der Knospe losgelöst und entfaltet hat.

Vielfach werden aus dem Blattgrunde Nebenblätter oder Stipulae gebildet, in typischen Fällen in Zweizahl, also je eines zu beiden Seiten des zugehörigen Blattes. Sie können ganz unscheinbar (Fig. 126 nb) oder ansehnlich (Fig. 136), gelblich oder grün gefärbt sein. Haben sie nur die Knospen zu schützen, so sind sie meist gelblich oder bräunlich gefärbt, im Innern viel einfacher als die Blattspreiten gebaut und fallen frühzeitig ab.

[S. 101]

Wenn sich aber die Nebenblätter an der Kohlensäureassimilation der Pflanze beteiligen (Fig. 207), so sind sie grün gefärbt und wie die Blattspreiten gebaut.

Die Nebenblätter sind sehr verschieden ausgebildet. Bei vielen Gewächsen sind es zwei freie Blättchen (Fig. 126 nb). Bei anderen sind sie je mit ihrem einen Rande dem Blattstiel angewachsen (Vaginalstipeln, Fig. 136 A), bei wieder anderen in verschiedener Weise miteinander verwachsen, nämlich entweder zu einem zungenförmigen Gebilde in oder oberhalb der Blattachsel (zu der Axillarstipel, Fig. 136 B) oder zu einem dem Blatte opponierten Gebilde (zu der opponierten Stipel). Bei gegenständiger Blattstellung können die Nebenblätter der Blattpaare paarweise mit ihren einander zugekehrten Rändern zu Interpetiolarstipeln (Fig. 137) verwachsen. Die Nebenblätter können aber auch an ihren beiden Blatträndern miteinander verwachsen und den Stengel als vollständig geschlossene Tüte umfassen, die den Stengel und die nächst jüngere Blattanlage in der Knospe umhüllt; die Tüte ist aus einer opponierten Stipel bei dem in Zimmern oft kultivierten Ficus elastica hervorgegangen, wo sie durch das neu sich entfaltende Blatt aufgeschlitzt und an ihrem Grunde abgesprengt wird; bei den Polygonaceen ist sie dagegen eine Axillarstipel, die, von den Blättern an ihrer Spitze durchbrochen, als trockene Scheide (Ochrea, Fig. 676) am Stengel zurückbleibt.

Fig. 136. Nebenblätter an den Blattstielbasen von Jugendblättern der Seerose (Nymphaea alba). A Vaginalstipeln, B Axillarstipel. Vergr. 12. Nach GLÜCK.

Fig. 137. Stengelknoten von Paronychia argentea (Caryophyllacee). Rechts und links: ein Blattpaar. Vorn und hinten: je eine interpetiolare Stipel. Vergr. 5. Nach GLÜCK.

Bei manchen Arten von Galium, wo die Nebenblätter vollständig dem Oberblatt gleichen, glaubt man vier-, bei anderen sechs- oder achtblättrige Blattquirle vor sich zu haben, während tatsächlich nur zwei Blätter in dekussierter Stellung mit einer je nach der Art verschiedenen Zahl von Nebenblättern den Wirtel bilden: nur zwei dieser Blattgebilde nämlich tragen Achselknospen.

Sehr häufig bei Monokotylen, seltener bei den Dikotylen (z. B. Umbelliferen) ist aus dem Blattgrund eine Scheide geworden. Bei den Gräsern ist sie (Fig. 138 v) auf der einen Seite gespalten, bei den Riedgräsern dagegen völlig geschlossen. Die Scheide der Gräser, die den unteren Teil des noch wachsenden und weichen Internodiums schützt und stützt, setzt sich am Grunde der ungestielten Blattspreite in einen häutigen Auswuchs, die Ligula (l), fort; an ihrer Basis aber ist sie unmittelbar oberhalb des Stengelknotens zu einem „Gelenk“ (dem Gras„knoten“) angeschwollen (Fig. 138 k).

Die Ligula entspricht nach GLÜCK den miteinander verwachsenen Spitzen der Vaginalstipeln, aus denen die Blattscheide hervorgegangen ist.

Heterophyllie und Anisophyllie. Manche Pflanzen bilden verschieden gestaltete Laubblätter aus, entweder in verschiedenen Zonen des Stengels[S. 102] (Heterophyllie, Fig. 139, 140) oder in einer und derselben Zone auf den beiden Seiten des dorsiventralen Sprosses (Anisophyllie, Fig. 141). Mit Anisophyllie ist oft Asymmetrie der Blattspreiten verbunden. Heterophyllie zeigen viele Wasserpflanzen mit bandförmigen oder zerteilten untergetauchten Wasserblättern, die an das Leben im Wasser angepaßt sind, und mit viel weniger zerteilten, gestielten Luftblättern (Fig. 139). Die Blätter, die der Efeu zur Zeit der Blütenreife entwickelt, sind wesentlich anders gestaltet als die, die er vorher ausgebildet hat. Noch auffälliger ist dieser Unterschied bei Eucalyptus globulus, der zunächst ovale und sitzende, später sichelförmige Blätter ausbildet. Häufig sind die untersten Blätter von Keimpflanzen (Jugend- oder Primärblätter) einfacher geformt als die übrigen (Folgeblätter).

Fig. 138. A Stengel und Blattstück einer Graminee. Nach SCHENCK.
B Gras„knoten“ im Längsschnitt, etwas schematisiert. h Halm, v Blattscheide, k Anschwellung der Blattscheide über dem Stengelknoten, s Stück der Blattspreite, l Ligula. Nat. Gr.

Fig. 139. Batrachium aquatile. Wasserhahnenfuß. ub Untergetauchte Blätter, sb schwimmende Blätter, b Blüte, f Fruchtanlage. Verkleinert. Nach SCHENCK.

Fig. 140. Keimpflanze von Acacia pycnantha. Die Keimblätter schon abgeworfen. 1–6 Jugendblätter, 1–4 einfach-, die folgenden doppelt gefiedert. An den Blättern 5 und 6 sind die Blattstiele bereits senkrecht abgeflacht. Bei den folgenden Blättern (7, 8, 9) sind sie als Phyllodien ausgebildet. n Nektarien an den Phyllodien. Vergr. ca. 1⁄2. Nach SCHENCK.

B. Die Keimblätter. Die Keimblätter oder Kotyledonen, die gestielt oder ungestielt sein können, sind[S. 103] fast immer viel einfacher gestaltet als die Laubblätter, wenn sie auch oft im wesentlichen dieselbe Gliederung wie diese erkennen lassen.

Sie können dauernd von der Samenschale umschlossen und unter der Erde verborgen bleiben (hypogäische). In diesem Falle sind sie gewöhnlich fleischige Reservestoffbehälter und bauen sich hauptsächlich aus Speicherparenchym auf. Die epigäischen, die die Samenschale sprengen und über der Erde erscheinen, pflegen zu ergrünen und alsdann einige Zeit wie die Laubblätter Kohlensäure zu assimilieren. Bei den Monokotylen, wo nur ein Keimblatt ausgebildet wird, verläßt gewöhnlich nur der Scheidenteil des Kotyledo den Samen; er kann unterirdisch und farblos bleiben oder aus der Erde hervorwachsen und ergrünen.

C. Die Nieder- und Hochblätter sind in ihren Anlagen von Laubblattanlagen nicht zu unterscheiden, stehen aber fertig ausgebildet in ihrer Gliederung den Laubblättern bedeutend nach, haben gewöhnlich Schuppenform und keinen Stiel. Sie bilden sich durch Vergrößerung von Primordialblättern, und zwar vornehmlich aus deren Blattgrund aus, während die Spreite mehr oder weniger unentwickelt bleibt (Fig. 126, 1–6, 142). Die Niederblätter, farblose oder grüne Schuppen, gehen am Luftsprosse oft der Bildung der Laubblätter voraus (Fig. 125 nd). Sie sind ferner als farblose, größere oder kleinere, oft kaum sichtbare und meist kurzlebige Schuppen vielfach die einzigen Blattgebilde der Rhizome, denen, entsprechend ihrem Leben im Dunkeln, die Laubblätter meist fehlen (Fig. 125 ws, 143). Die Hochblätter dagegen, von gleichem Bau und gleicher Beschaffenheit wie die Niederblätter des Luftsprosses, manchmal aber andersfarbig, pflegen oben am Stengel auf die Laubblätter als Deckblätter oder Brakteen für die Blüten und Blütensprosse zu folgen. Der innere Bau beider Blattarten ist wesentlich einfacher als der der Laubblätter. Nieder- und Hochblätter sind an der Ernährung der Pflanze nicht oder kaum beteiligt, sondern meist Schutzorgane für die jungen Blattspreiten oder die Stengelknospen. Sie sind aber meist durch Zwischenformen mit den Laubblättern verbunden (Fig. 126, 142).

Fig. 141. Anisophyllie der dorsiventralen Sprosse von Selaginella Martensii; auf der Oberseite des Stengels zwei Reihen sehr kleiner asymmetrischer grüner Blätter, auf jeder Flanke eine Reihe viel größerer asymmetrischer Laubblätter. Etwas vergr.

Fig. 142. Helleborus foetidus. Laubblatt (l) und Übergänge zum Hochblatt (h). Verkl. Nach SCHENCK.

Fig. 143. Rhizom von Polygonatum multiflorum. a Knospe für den nächstjährigen oberirdischen Trieb, b Narbe des diesjährigen Triebes, c, d und e Narben der drei vorausgegangenen Jahre. w Wurzeln. Auf 3⁄4 verkleinert. Nach SCHENCK.

[S. 104]

Daß die Niederblätter und Hochblätter der Hauptsache nach als Hemmungsbildungen von Laubblättern aufzufassen sind, lehrt nicht nur ihre Entwicklungsgeschichte, sondern auch die Möglichkeit, ihre Anlagen zu Laubblättern werden zu lassen. So gelang es GOEBEL, Blattanlagen, welche Niederblätter erzeugt hätten, zur Laubblattbildung dadurch zu bewegen, daß er die Sprosse entgipfelte und entblätterte. Unterirdische Stengel, die man zwingt, sich im Tageslichte zu entwickeln, bilden Laubblätter aus denselben Anlagen, die unter der Erde zu Niederblättern geworden wären. Im inneren Bau sind Nieder- und Hochblätter aber nicht ausschließlich Hemmungsbildungen von Laubblättern, sondern zeigen oft diesen gegenüber besondere Differenzierungen, die mit ihren Aufgaben zusammenhängen können[76].

3. Lebensdauer der Blätter. Die Blätter haben bei vielen Gewächsen eine kürzere Lebensdauer als die Sproßachsen, an denen sie entstanden sind. In diesem Falle werden sie bei den meisten Bäumen und Sträuchern von den Sproßachsen abgestoßen (Blattfall) oder verfaulen am Stengel (bei Erdsprossen); an den Luftsprossen der Kräuter sterben sie meist mit den Stengeln ab. Blattnarben am Stengel geben die Stellen an, wo früher Blätter gesessen haben. Pflanzen, deren Laubblätter mehrere Vegetationsperioden tätig bleiben, nennt man immergrün im Gegensatze zu den sommergrünen, bei denen sie nur eine Vegetationsperiode dauern.

Der Blattfall der phanerogamen Holzgewächse wird durch eine parenchymatische Trennungsschicht vermittelt, die am Grunde des Blattstiels meist erst kurz vor dem Blattfall, mit oder ohne vorausgehende Zellteilungen, ausgebildet wird. Alle mechanischen Gewebe des Blattstiels sind an dieser Stelle sehr reduziert; verholzt sind dort nur die Gefäße. Die Blattablösung erfolgt in der Trennungsschicht meist durch Abrundung der Zellen gegeneinander und durch Verschleimung ihrer Mittellamellen, während die Gefäße und die Siebröhren zerrissen werden. Die Blattnarbe wird dadurch abgeschlossen, daß die äußersten Zellschichten der Wundfläche sich in (verholzendes) Kutisgewebe umwandeln, worunter meist noch durch ein Korkkambium eine Korkschicht gebildet wird, die sich an die Korkschicht des Stengels anschließt.

δ) Die Verzweigung der Sprosse[65] u. [77]. Je mehr Laubblätter der Sproß im Sonnenlichte ausbreiten kann, um so mehr organische Substanz vermag er im Assimilationsvorgange zu bilden. In dieser Hinsicht ist, wie leicht ersichtlich, ein verzweigtes Sproßsystem einem aufrechten Einzelsprosse weit überlegen. Jenes kann Blattflächen dem ungeschwächten Lichte allseits über einen größeren Raum darbieten.

Wie bei den thallösen Pflanzen kommen die Verzweigungen der Sprosse in zweierlei Weise zustande: entweder, doch nur selten, durch Gabelung, Dichotomie, einer Mutterachse in zwei Tochterachsen, oder meist durch seitliche Neubildungen von Tochterachsen an einer weiter wachsenden Mutterachse, also durch seitliche Verzweigung.

A. Die dichotome Verzweigung. Sie ist auf die Sprosse einiger Lycopodiaceen beschränkt.

Bei solchen Bärlappgewächsen gabelt sich ein Sproß folgendermaßen in zwei gleichwertige Teile: Der kreisförmige Querschnitt des Vegetationspunktes, der gewöhnlich keine Scheitelzelle mehr erkennen läßt, wird elliptisch. Den beiden Brennpunkten der Ellipse entsprechend wölben sich die zwei neuen Vegetationskegel vor (Fig. 144). Die aufeinanderfolgenden Gabelungen können in rechtwinkligen Ebenen zueinander stattfinden; in diesem Falle breitet sich das Verzweigungssystem nicht in einer Ebene, wie in dem Schema (Fig. 82 a), sondern allseits im Raume aus.

Nicht selten weicht bei diesen Gewächsen, z. B. bei Selaginella, das Verzweigungssystem in seinem Aussehen stark von dem Typus dadurch ab, daß immer nur der eine Gabelast jedes Zweigpaares einer Ordnung weiter wächst und sich wieder gabelt oder, wie man auch sagt, die Verzweigung fortsetzt (Fig. 145). Stellen sich alsdann alle die Zweigstücke, die jedesmal die Verzweigung fortsetzen, annähernd in eine Richtung[S. 105] ein, die anderen aber schräg dazu, so entsteht ein Verzweigungssystem, das einem razemösen (Fig. 82 b) zum Verwechseln ähnlich werden kann. Doch wird es nicht von einer einheitlichen Hauptachse, sondern von einer nur scheinbaren Hauptachse durchzogen, an der jedes Stück eine Tochterachse des vorausgehenden ist. Eine solche Scheinachse bezeichnet man zum Unterschied von der echten Hauptachse (Monopodium) als Sympodium, die Verzweigung als sympodiale Verzweigung auf dichotomer Grundlage.

Übrigens kann man bei den Bärlappgewächsen alle Übergänge von dichotomer zu seitlicher Verzweigung beobachten. Viele Arten bilden bei der Gabelung eines Vegetationspunktes sofort zwei Vegetationspunkte von verschiedener Größe aus, von denen der kleinere sehr schnell gegen den größeren seitlich verschoben wird (Fig. 146).

Fig. 144. Ein in zwei gleichstarke Gabeläste (p′ und p″) sich fortsetzender Sproß (p) von Lycopodium alpinum, im Längsschnitt. b Blattanlage, c Rinde, f Leitbündel. Vergr. 60. Nach HEGELMAIER.

Fig. 145. Sympodium auf dichotomer Grundlage.

Fig. 146. Ein in zwei ungleiche Gabeläste (p′ und p″) sich teilender Sproß von Lycopodium inundatum. b Blattanlagen. Vergr. 40. Nach HEGELMAIER.

B. Die seitliche Verzweigung. a) Ort der Entstehung der Seitenknospen. An dem aus Sproßachse und Blättern bestehenden Sprosse bilden sich Seitenzweige auch bei seitlicher Verzweigung in der Regel nur an der Sproßachse oder an der untersten Basis der Blattanlagen aus, und zwar meist schon am Vegetationspunkte des Muttersprosses in akropetaler Reihenfolge als Auswüchse an seiner Peripherie, also exogen wie die Blattanlagen (Fig. 98 g). Die Orte der Seitensproßentstehung sind in der Regel fest bestimmt. Bei Pteridophyten entspringen sie oft neben den Blatthöckern, bei den Samenpflanzen aber in der Regel da, wo die Oberseite der höckerförmigen Blattanlage in das Gewebe des Vegetationspunktes übergeht, mit anderen Worten in der Blattachsel, bald mehr auf der Basis der Blattanlage, bald mehr am Stengel.

Fig. 147. Schema für die entwicklungsgeschichtlichen Beziehungen zwischen Achselsproß und Blattanlage; im Längsschnitt. Nach GOEBEL.
Die Anlage eines Seitenzweiges kann 1. aus dem Gewebe der Sproßachse dicht oberhalb der Blattanlage und nach ihr (Fig. 147 I) oder vor der Blattanlage entstehen; im letzteren Falle wölbt sich die Blattanlage aus dem basalen Gewebe an der Unterseite der Zweiganlage hervor (Fig. 147 III); 2. kann die Zweiganlage aus dem Gewebe der ganz jugendlichen Blattanlage sich bilden (Fig. 147 II). Bei dorsiventralen Sprossen von Blütenpflanzen gibt es auch extraaxilläre Seitenknospen seitlich von den Blattanlagen.

[S. 106]

An dem Längsschnitte durch einen Vegetationspunkt in Fig. 98 sieht man die jüngste Anlage eines Seitensprosses (g) bereits in der Achsel einer der allerobersten Blattanlagen sich vorwölben. In den Achseln nächstälterer Blatthöcker sind die Sproßanlagen, da sie in akropetaler Folge entstehen, schon größer und beginnen ihrerseits Blatthöcker hervorzubringen. Solche in den Blattachseln erzeugte Knospen werden als Achsel- (oder Seiten-) Knospen, die aus ihnen hervorgehenden Sprosse als Achselsprosse bezeichnet; die Knospe, die das fortwachsende Ende eines Sprosses abschließt, heißt im Gegensatz dazu End- oder Terminalknospe. Das Blatt, in dessen Achsel eine Knospe steht, ist ihr Tragblatt, Stützblatt oder Deckblatt (Fig. 149 db). Die durch die Mittelrippe dieses Blattes und die zugehörige Mutterachse gelegte Ebene heißt die Mediane des Blattes. Im allgemeinen steht die Achselknospe in der Mediane ihres Deckblattes: nur selten ist sie seitlich dagegen verschoben. Regel ist bei den Angiospermen, daß jedes Laubblatt eine Achselknospe trägt und daß nur eine Achselknospe in der Achsel ihres Deckblattes entsteht; bei manchen Gymnospermen dagegen bilden nicht alle Blätter Achselknospen aus.

Doch gibt es auch Fälle, wo auf die erste Achselknospe die Bildung anderer, der Beiknospen, folgt. Entweder stehen diese übereinander (seriale Beiknospen), so z. B. bei Lonicera, Robinia, Gleditschia, Gymnocladus, oder nebeneinander (kollaterale Beiknospen), z. B. bei manchen Liliaceen, wie Allium- und Muscari-Arten.

Fig. 148. A Cuphea lanceolata (Lythracee). Der (vegetative) Achselsproß in der Achsel des linken unteren Blattes nicht verschoben; der des rechten unteren Blattes (eine Blüte bildend) dem Sproß bis zu dem nächst oberen Blattpaar angewachsen. 1⁄2 nat. Größe.
B Samolus Valerandi (Primulacee). Die Tragblätter t an den Achselsprossen a emporgerückt. Fruktifizierende Pflanze. Jeder Achselsproß schließt mit einer Frucht ab. Nat. Größe. Nach SCHENCK.
C Blatt der ostasiatischen Cornacee Helwingia: Der kleine männliche Blütenstand mit dem Laubblatt bis zur Mitte der Spreite verwachsen. Nach SIEBOLD und ZUCCARINI.
[S. 107]

Interkalare Wachstumsvorgänge in dem Gewebe an der Basis der Achselknospe können Verschiebungen bewirken, wodurch die ursprünglichen Beziehungen zwischen Deckblatt und Achselknospe geändert werden. So gibt es Fälle, wo die Knospen den Achseln ihrer Deckblätter durch Streckung des Gewebes der Mutterachse unterhalb der Achselknospen entrückt werden, die einzelne Knospe also viel höher am Stengel als ihr Deckblatt befestigt ist (Fig. 148 A). Das Deckblatt kann auch durch eigenes basales Wachstum unterhalb der auf ihm sitzenden Knospe diese mitnehmen, so daß der Achselsproß auf ihm sitzt (Fig. 148 C); oder es wird selbst von der sich streckenden Basis des Achselsprosses, wie in Fig. 148 B, mitgenommen und scheint ihm anzugehören.

Daß schon am Vegetationspunkte die Anlagen der Seitenzweige sichtbar werden, ist bei den Phanerogamen Regel. Treten Seitensproßanlagen erst in größerer Entfernung vom Scheitel auf, so läßt sich meist nachweisen, daß embryonale Substanz für ihre Bildung an den entsprechenden Orten aufgespart blieb.

Sproßanlagen, die in solcher Weise an vorbestimmten Stellen meist noch jugendlicher Pflanzenteile entstehen, werden als normale bezeichnet und solchen gegenübergestellt, die beliebigen anderen Stellen jüngerer oder älterer Pflanzenteile, nämlich Stämmen, Wurzeln und Blättern, entspringen und meist aus wieder teilungsfähig gewordenem Dauergewebe hervorgehen. Solche Anlagen pflegt man als adventive Bildungen zusammenzufassen. Adventivsprosse können auch inneren oder endogenen Ursprung haben; sie müssen in solchem Falle die äußeren Gewebe der Mutterpflanze durchbrechen, um nach außen zu gelangen. An Stamm- und an Wurzelteilen auftretende Adventivsprosse sind vornehmlich endogenen, die an Blättern erzeugten exogenen Ursprungs.

Adventivsprosse brechen oft als Wurzelbrut aus den Wurzeln von Kräutern (z. B. bei Convolvulus arvensis, Rumex Acetosella) oder von Sträuchern (Rubus, Rosa, Corylus) oder von Bäumen (Populus, Ulmus, Robinia) hervor, werden selbst an den Blättern mancher Gewächse, so des Schaumkrautes (Cardamine partensis), der Brunnenkresse (Nasturtium officinale), verschiedener Farnkräuter hervorgebracht. Bei anderen Pflanzen regt erst eine Verwundung des Pflanzenkörpers ihre Bildung an. So treten sie häufig als Stockausschlag an den Stümpfen gefällter Bäume auf. Gärtner verwerten vielfach Adventivknospen, die an abgeschnittenen Stammstücken, Wurzelstücken oder abgeschnittenen Blättern (Stecklingen) entstehen, um Pflanzen zu vermehren[78]. Gehen die Knospen nicht aus vorhandenen Vegetationspunkten, sondern aus Dauergewebe durch Neubildung hervor, so spricht man von Restitution (vgl. Physiologie).

Fig. 149. A Grundriß (Diagramm) und B Seitenriß einer Seitenknospe von einer Monokotyle mit 1⁄3-Blattstellung. M Mutter- (Abstammungs-) Achse, db Deckblatt daran. t Tochterachse, vb adossiertes Vorblatt daran. Verbindungslinie db–t–m Richtung der Mediane der Seitenknospe, punktierte Linie: Richtung der Transversalebene. h: was an der Tochterachse als hinten, v: was daran als vorn bezeichnet wird.
b) Blattstellungsanschluß der Seitenknospen. Will man die Stellungsverhältnisse an einem Seitenzweige beliebiger Ordnung untersuchen, so orientiert man ihn stets so, daß sein Deckblatt nach vorn (Fig. 149 db), d. h. nach dem Beobachter hin gerichtet, seine Mutterachse (m) aber nach hinten, d. h. von ihm weggewendet ist, und zugleich in der Weise, daß die Mediane des Deckblattes mit der Mediane des Beschauers zusammenfällt. Die Mediane des Deckblattes ist alsdann zugleich die Mediane des axillären Seitensprosses (vgl. Fig. 149 t).[S. 108] Die Ebene, die man durch die Längsachse des Seitensprosses senkrecht zu seiner Mediane legen kann, heißt die Transversalebene des Seitensprosses (vgl. Fig. 149 A). An dem Seitenzweige nennt man alles vorn (v), was zwischen seiner Transversalebene und seinem Deckblatt gelegen ist, hinten (h), was zwischen seiner Transversalebene und seinem Muttersproß gelegen ist, seitlich rechts, was sich an ihm rechts, links, was sich an ihm links von seiner Mediane befindet. Median heißt ferner alles, was am Seitenzweig in die Mediane, transversal, was in Richtung der Transversalen fällt, diagonal endlich, was schräg nach vorn oder hinten (also zwischen der Medianen und der Transversalen) an ihm liegt.

An den Seitenknospen pflegen die untersten Blätter, die direkt auf das Deckblatt folgen, unabhängig von der Anordnung der höheren Blätter eine ganz bestimmte Stellung zu dem Deckblatt und zu der Mutterachse einzunehmen. Sie vermitteln den Anschluß der Blattstellung des Seitenzweiges zu der am Muttersprosse. Bei den Monokotylen gibt es ein solches Blatt (Fig. 149 vb), bei den Dikotylen meist deren zwei von bezeichnender Stellung, die Vorblätter. Es sind häufig Nieder- oder Hochblätter. Bei den Monokotylen steht das Vorblatt median an der der Mutterachse zugekehrten oder hinteren Seite des Zweiges. Man nennt es deshalb adossiert. Häufig kommen ihm zwei als Kiele bezeichnete Seitennerven zu, dagegen fehlt der Mittelnerv (Fig. 149 A). Es dürfte durch Verwachsung zweier seitlicher Vorblätter entstanden sein[79]. Bei den Dikotylen stehen die beiden Vorblätter (α und β) an den Achselknospen gewöhnlich rechts und links transversal, worauf die anderen Blätter oft in abweichenden Stellungen folgen.

Die Seitenknospen können im übrigen die gleiche oder eine andere Blattstellung wie die Mutterachse zeigen.

Liegt schraubige Blattstellung vor, so ist die Grundspirale bei manchen Gewächsen an den Seitenknospen gleichläufig (homodrom), bei anderen gegenläufig (antidrom) zu der an den Muttersprossen.

c) Ausbildung des Sproßverzweigungssystems. Jedes Sproßsystem erhält sein Aussehen, seinen Habitus, abgesehen von der Wuchsrichtung seiner Hauptachse, durch die Zahl der Ordnungen von Seitenachsen, die zur Ausbildung gelangen, durch die Stellung der zu Seitenzweigen austreibenden Knospen an ihren Mutterachsen sowie durch die Wachstumsintensität und die Orientierung der Seitenzweige verschiedener Ordnungen im Verhältnis einerseits zu ihresgleichen und andererseits zu ihren Mutterachsen. Auch die Verschiedenheiten im Aussehen der Sproßsysteme lassen oft deutliche Beziehungen zur Lebensweise der Pflanzen erkennen.

1. Wuchsrichtung der Hauptachse des Sproßsystems. Das Sproßsystem erhält sein Gepräge zunächst durch die Wuchsrichtung der Hauptachse.

Erhebt sich die Hauptachse senkrecht vom Boden, so nennt man die Pflanze aufrecht, den Sproß orthotrop. In diesem Falle pflegt die Hauptachse bei freiem Wuchse des Systems ihre mehr oder weniger plagiotropen und dorsiventralen Seitenzweige in radiärer Verteilung auszubilden. Wächst die Hauptachse schräg oder horizontal, also plagiotrop, so sind die Seitenzweige daran meist dorsiventralsymmetrisch angeordnet; bleibt die Hauptachse samt den Seitenzweigen auf der Oberfläche des Bodens oder horizontal unter dem Boden, ohne sich zu erheben, so entstehen kriechende Pflanzen, deren Sprosse meist, und zwar auf ihren Unterseiten, bewurzelt sind. Bei kriechenden Pflanzen pflegen die Seitenzweige den Flanken der Sprosse zu entspringen; erheben sich solche Seitenzweige senkrecht vom Boden, so verhalten sie sich hinsichtlich ihrer Verzweigung oft wie aufrechte Pflanzen.

2. Sproßfolge. Ist schon der Vegetationspunkt der Hauptachse (d. h. also der Keimlingsachse) nach entsprechender Erstarkung der Pflanze zur Bildung der Fortpflanzungsorgane befähigt, so wird die Pflanze einachsig (haplokaulisch) genannt. Einachsig[S. 109] ist der Mohn, der schon seinen ersten, aus dem Keim hervorgegangenen Sproß mit einer Blüte abschließt. Meist kommt aber erst Achsen zweiter, dritter, vierter oder n-ter Ordnung die Fähigkeit zu, eine Blüte auszubilden. Alsdann ist die Pflanze zweiachsig (diplokaulisch), dreiachsig (triplokaulisch) oder n-achsig. Eine dreiachsige Pflanze ist der große Wegerich, Plantago major, der an seiner ersten Achse nach den Niederblättern nur Laubblätter, an den Achsen zweiter Ordnung nur Hochblätter trägt und aus den Achseln der letzteren die mit Blüten abschließenden Achsen dritter Ordnung erzeugt. An unseren Bäumen sind erst Sprosse n-ter Ordnung befähigt, Blüten zu bilden. In den meisten Verzweigungssystemen gibt es viele Seitensprosse, die sich nicht bis zu den blütenbildenden Ordnungen weiter verzweigen. Entweder treten sie als Bereicherungssprosse auf, so bei vielen einjährigen Pflanzen, oder sie entfalten sich als Erneuerungs- oder Innovationssprosse alljährlich am Pflanzenstock, wie bei den mehrjährigen Gewächsen. So pflegt in der Sproßordnung verzweigter Pflanzen eine Arbeitsteilung zwischen den Seitensprossen vorzukommen, die sich oft auch in der Stellung und in der Ausgestaltung der Seitensprosse zu erkennen gibt; die Seitensprosse sehen verschieden aus, je nachdem sie vornehmlich im Dienste der Ernährung, der Speicherung oder der Fortpflanzung stehen.

3. Stellungen der austreibenden Knospen. Nur selten treiben sämtliche Seitenknospen, die an einer Mutterachse entstanden sind, sofort aus und werden zu Seitensprossen; das ist z. B. bei Kräutern der Fall. Regel ist indes, daß viel mehr Seitenknospen angelegt werden, als zur Entfaltung kommen, daß also nur ein ganz kleiner Teil zu Sprossen auswächst. Die übrigen bleiben ruhende, schlafende Augen oder verkümmern frühzeitig. Entfaltung aller Knospen wäre für die Pflanze eine ganz unnötige, ja sogar schädliche Materialverschwendung. Die Zweige würden sich gegenseitig so stark beschatten, daß ein Teil absterben müßte.

Fast jeder Baum besitzt, namentlich im unteren Teile seiner Jahrestriebe, solche „schlummernde Augen“, die kürzere oder längere Zeit entwicklungsfähig bleiben und zur Entfaltung nur unter besonderen Bedingungen gelangen. Bei der Eiche, Rotbuche u. a. können schlummernde Knospen bis 100 Jahre alt werden. Vielfach sind es daher Sprosse aus solchen Knospen und nicht Adventivsprosse, die aus alten Stämmen hervorbrechen.

Das Austreiben der Seitenknospen kann regellos stattfinden oder bestimmten Regeln unterworfen sein, akropetal oder basipetal erfolgen. An reich verzweigten Sproßsystemen sind die peripheren bevorzugt; denn hier besteht die größte Aussicht, die Blätter in günstiges Licht zu bringen.

Fast alle einheimischen Bäume beschränken sich während einer Vegetationsperiode darauf, die im Frühling aus den Winterknospen hervorgegangenen Zweige an ihren Spitzen zu verlängern und ruhende Knospen an diesen Ästen auszubilden. Meist erst bei Beginn einer neuen Wuchsperiode lassen sie alsdann auf einmal Seitenzweige aus den obersten Knospen, die im vergangenen Jahre an den Ästen angelegt wurden, hervorgehen; etwa in einem echten oder Scheinquirl (Araukarie, Tanne) oder meist so, daß die obersten Seitenknospen zu Langtrieben, einige darunter befindliche zu Kurztrieben (Birne, Apfel) werden. Bei anderen, namentlich aufrechten Sprossen treibt von allen daran angelegten Knospen in streng gesetzmäßiger Weise jede zweite oder dritte oder vierte usw. aus und zwar so, daß die austreibenden Zweige seitlich oder longitudinal gleichen Abstand voneinander erhalten.

Die Verteilung der austreibenden Knospen, ob wechselständig oder quirlständig, bewirkt Unterschiede im Aussehen der Verzweigungssysteme. Bei gegenständiger Stellung der Knospen kommt eine Art unechte Gabelverzweigung zustande, wie bei der Roßkastanie und dem Flieder.

4. Richtung und Wachstumsintensität der Seitenzweige im Verhältnis zu ihresgleichen. Die seitlichen Winkel, die an orthotropen Ästen die Längsachsen benachbarter Seitenzweige gleicher Ordnung miteinander bilden, können bei einer Pflanzenart ziemlich beständig sein (z. B. bei der Araukarie, Tanne).

[S. 110]

Dagegen ist die Wachstumsintensität der Seitenachsen an einer Mutterachse oft recht verschieden. Oft bildet sich nämlich nur ein Teil der Zweige als Langtriebe, der Rest zu gestauchten Kurztrieben aus, vielfach als Ausdruck einer Arbeitsteilung zwischen den Seitenzweigen. Die Kurztriebe haben meist kürzere Lebensdauer, pflegen sich nicht zu verzweigen und nehmen bei Bäumen am Aufbau des bleibenden Gerüstes keinen Anteil: so bei der Lärche, die die Kurztriebe in Gestalt dichter Nadelbüschel an ihren älteren Langtrieben trägt, und bei den Kiefern.

5. Richtung und Wachstumsintensität der Seitenzweige im Verhältnis zu ihren Mutterachsen. Verschiedene Arten seitlicher Verzweigung. Auch die Neigungswinkel der Seitenachsen zu ihrer Mutterachse pflegen im allgemeinen bei einer Spezies ziemlich konstant, also für die Art bezeichnend zu sein. Sie sind meist kleiner, selten größer als 90°.

Die Seitenachsen, die an einer Mutterachse entstanden sind, können weniger intensiv als diese oder ebenso schnell, oft aber auch viel schneller als die Mutterachse wachsen. Im letzten Fall sind sie also gegenüber der Mutterachse gefördert. Die Mutterachse kann sogar nach der Bildung von Seitenzweigen ihr Wachstum ganz einstellen und einem oder mehreren Seitenzweigen die Ausbildung neuer Seitenzweige, die Fortsetzung der Verzweigung überlassen. Es leuchtet ein, daß die entstehenden Verzweigungssysteme durch solche Unterschiede im Wachstum der Tochter- und Mutterachsen völlig verschiedenes Aussehen erhalten müssen. Diese Differenzen haben Anlaß zur Unterscheidung verschiedener Arten seitlicher Verzweigung gegeben, deren Kenntnis für das Verständnis des morphologischen Aufbaues der höheren Pflanzen unerläßlich ist. Besonders leicht kann man ihre Unterschiede an den Blütenständen oder Infloreszenzen der Samenpflanzen beobachten (vgl. speziellen Teil). Bezeichnend für viele Infloreszenzen ist nämlich, daß die Achselknospen aller Hochblätter austreiben; dadurch werden die Infloreszenzen im Gegensatze zu den vegetativen Sproßsystemen zu außerordentlich dichten Zweigsystemen.

a) Wächst die Hauptachse stärker als die Seitenachsen I. Ordnung, diese stärker als die an ihnen entstehenden Seitenzweige II. Ordnung usw., oder wachsen die jeweiligen Mutterachsen ebenso stark wie ihre Tochterachsen, so spricht man von razemöser Verzweigung. Im ersteren Falle geht eine echte Hauptachse (ein Monopodium) durch das ganze Verzweigungssystem hindurch (vgl. das auch hierfür gültige Schema, Fig. 82 b). Diese typisch monopodiale Verzweigung ist z. B. bei der Tanne und anderen Koniferen mit pyramidenförmigen Gesamtumrissen ausgebildet: der radiäre Hauptsproß wächst unter dem Einflusse der Schwerkraft (vgl. S. 299) senkrecht nach oben, orthotrop; die meist dorsiventralen Seitenzweige I. Ordnung strahlen in horizontaler oder schräger Richtung vom Hauptsprosse allseitig aus. Wachsen auch die Seitenzweige I. Ordnung steil aufrecht, wie z. B. bei der Zypresse und bei vielen Sträuchern, so ist oft kein deutlicher Längenunterschied zwischen der Hauptachse und den Seitenachsen I. Ordnung vorhanden. Das Verzweigungssystem hat in diesem Falle ovalen oder runden Umriß.

b) Erlischt das Wachstum in den Mutterachsen rasch und geht es auf die Tochtersprosse über, so liegen zymöse Verzweigungen vor. Sie sehen verschieden aus, je nachdem mehrere gleichmäßig wachsende Seitenachsen gleicher Ordnung oder nur eine Seitenachse das Verzweigungssystem fortsetzen. Im letzteren Falle ist eine scheinbare Hauptachse, ein Sympodium, ausgebildet.

Bei vielen zymösen Verzweigungen wachsen die jeweiligen Mutterachsen nicht nur langsamer als die Tochterachsen, sondern ihre Spitzen sterben sogar ab oder werden abgeworfen, wie bei vielen unserer Laubbäume, z. B. den Weiden, der Linde.

[S. 111]

I. Setzen mehr als zwei Seitenzweige gleicher Ordnung die Verzweigung fort, so spricht man von Pleiochasium. Diese Seitenzweige pflegen dem oberen Ende ihres Muttersprosses genähert zu sein und allseits, bei manchen Pflanzen quirlartig, schräg nach außen in den Raum zu strahlen (z. B. Verzweigung von Euphorbia).

II. Setzen zwei Seitenzweige gleicher Ordnung, die in spitzen oder rechten Winkeln einander gegenüber zu stehen pflegen, die Verzweigung fort, so entsteht ein Dichasium. Schematisch zeigt es Fig. 150 (vgl. dazu die dichasiale Infloreszenz Fig. 536). Die Seitenzweige breiten sich aber nicht, wie in dem Schema, in einer Ebene aus, sondern allseits im Raume. Dies wird dadurch erreicht, daß die Verzweigungsebenen in den aufeinanderfolgenden Seitenzweigordnungen nicht zusammenfallen, sondern rechte Winkel miteinander bilden. So kann nur der Grundriß (Fig. 152 E) Aufschluß über die wahre Anordnung der Zweige des Sproßsystems geben. Ein solches Verzweigungssystem, das z. B. auch bei der auf unseren Bäumen wachsenden Mistel vorkommt, kann den Anschein einer Dichotomie erwecken.

III. Setzt immer bloß ein Seitenzweig die Verzweigung fort, so liegt ein Monochasium vor. Oft stellt sich dieser Seitenzweig in die Verlängerung seines Muttersprosses, indem er dessen Spitze zur Seite drängt (Fig. 151). So entsteht ähnlich, wie es bei der dichotomen Verzweigung des Sprosses der Fall sein kann (S. 104 ff.), ein Verzweigungssystem mit einer Scheinachse (Sympodium), die sich aus Seitensprossen verschiedener Ordnungen zusammensetzt. Ein solches Verzweigungssystem kann einem monopodialen sehr ähnlich sehen, namentlich wenn die Scheinachse, wie so oft, senkrecht emporwächst, die im Wachstume zurückbleibenden Enden der Zweige, die die Scheinachse zusammensetzen, dagegen Seitenzweigen ähnlich sich horizontal oder schräg stellen. Von Seitenzweigen unterscheiden sich solche Zweige aber stets dadurch, daß ein Deckblatt an ihrer Basis fehlt, dafür aber ein Blatt ihnen gegenüber am Sympodium befestigt ist, nämlich das Deckblatt des geförderten Tochtersprosses (vgl. dazu Fig. 151). Nicht selten ist das Sympodium weiter sympodial verzweigt. Stämme und Äste vieler unserer Laubhölzer sind solche Sympodien, so bei der Linde oder der Rotbuche. An ihrem Stamme und an ihren Ästen ist aber von dem sympodialen Aufbaue nichts mehr zu erkennen. Dauernd erkennbar bleibt dagegen der sympodiale Aufbau vielfach an unterirdischen Stengelteilen, so an denen von Polygonatum multiflorum (Fig. 143). Jedes Jahr erhebt sich die jeweilige Endknospe dieses unterirdischen Stammes als Sproß über den Boden, während eine Achselknospe das Rhizom im Boden fortsetzt.

Fig. 150. Schema des Dichasiums. H Keimlingsachse, 1, 2, 3 Tochterachsen 1., 2., 3. Ordnung.

Fig. 151. Schema des Monochasiums vgl. Fig. 152.

Je nach der Stellung der Seitensprosse verschiedener Ordnung zueinander entstehen monochasiale Verzweigungssysteme von sehr verschiedenem und sehr bezeichnendem Aufbaue. Sehr oft setzt sich die Verzweigung schon aus der Achsel eines Vorblattes fort.

A. Entweder fallen die Medianen aller Seitensprosse in eine und dieselbe Ebene, nämlich in die Medianebene des Seitensprosses I. Ordnung; sie stehen also median.

α) Alle aufeinanderfolgenden Seitenzweige fallen median nach vorn von ihren Mutterachsen, d. h. zwischen die Mutterachse und das Deckblatt der Mutterachse (vgl. S. 107 ff.), in der Seitenansicht des Verzweigungssystems also auf ein und dieselbe Seite: Sichel (Fig. 152 C, D).

β) Die aufeinanderfolgenden Seitenzweige fallen sämtlich median nach hinten von ihren Mutterachsen (vgl. S. 107 ff.), in der Seitenansicht also abwechselnd nach links und rechts: Fächel (Fig. 152 A, B).

B. Die Mediane jedes Seitensprosses (I., II., III. usw. Ordnung) steht immer transversal, d. h. seitlich rechts oder links zur Mediane des Deckblattes für seinen Muttersproß. Solche Verzweigungssysteme lassen sich natürlich nur in Grundrissen veranschaulichen.

α) Die aufeinanderfolgenden Seitenachsen stehen stets nach der gleichen Seite transversal zu den Medianen ihrer Muttersproßdeckblätter, entweder nach rechts oder nach links: Schraubel (Fig. 152 F).

[S. 112]

β) Die aufeinanderfolgenden Seitenachsen stehen abwechselnd nach rechts und links transversal zu den Medianen ihrer jeweiligen Muttersproßdeckblätter: Wickel (Fig. 152 G).

Schraubel und Wickel lassen sich aus dem Grundriß des Dichasiums leicht ableiten (Fig. 152 E) und dadurch in ihrer Eigenart verstehen.

Fig. 152. A Fächel im Seitenriß, B in Grundansicht. C Sichel im Seitenriß, D in Grundansicht. E Dichasium in Grundansicht und Ableitung der Wickel (blaue Linie) und Schraubel (rote Linie) daraus. F Grundansicht der Schraubel. G Grundansicht der Wickel. 1–9 Ordnungen aufeinanderfolgender Tochterachsen. (A–D nach EICHLER, das übrige nach KARSTEN, verändert.) Um das Verständnis zu erleichtern, sind in A–D und F, G die aufeinanderfolgenden Tochterachsen je nächst niederer Ordnungen mit verschiedenen Farben wiedergegeben. Das an jeder Tochterachse befestigte Deckblatt hat die gleiche Farbe erhalten wie diese Achse, an der es entstanden ist.
In einem Sproßsysteme sind nicht selten verschiedene Verzweigungsarten miteinander verbunden. So können etwa auf dem razemös verzweigten Keimsproß zymös verzweigte Seitensprosse folgen. In besonders mannigfaltiger und wechselnder Verbindung sind die verschiedenen Verzweigungsarten bei den Blütenständen vereinigt (vgl. speziellen Teil).

b) Die Wurzel[80].

Den Wurzeln, die meist in der Erde (Erdwurzeln), seltener in der Luft (Luftwurzeln) leben, fehlen immer die Blätter. Dadurch haben sie ein ganz anderes Aussehen als die Sprosse, selbst als die Erdsprosse. Ihre Aufgabe ist, die Pflanze im Boden zu befestigen, aus dem Boden Wasser und Bodensalze aufzunehmen und zum Sproßsystem hinzuleiten. Auch ihre Funktionen sind also völlig andere als bei den meisten Sprossen, die hauptsächlich der Kohlensäureassimilation dienen.

1. Vegetationspunkt. Die Wurzel verlängert sich an der Spitze. Sie zeigt Scheitelwachstum mittels eines kegelförmigen Vegetationspunktes. Der Vegetationskegel bedarf für seine dünnwandigen embryonalen Zellen eines besonderen Schutzes; denn er wird bei dem Wachstum der Wurzel wie[S. 113] ein Nagel zwischen die scharfkantigen Bodenpartikelchen vorwärts getrieben. Dieser Schutz wird von einem besonderen Organe aus parenchymatischen Dauerzellen, der Wurzelhaube oder Kalyptra, übernommen, die die Spitze der Wurzel wie ein Däumling den Finger umhüllt, so daß der eigentliche Vegetationspunkt im Innern des Gewebes der Wurzelspitze, also interkalar, liegt. Die Verschleimung der äußeren Zellmembranen der Haube erleichtert zugleich bei den Erdwurzeln das Vorwärtsdringen im Boden. Die Wurzelhaube sieht man meist erst auf medianen Längsschnitten durch die Wurzelspitzen (Fig. 153, 154); doch gibt es auch Fälle (Pandanus), wo man sie schon an der unversehrten Wurzel als eine ihren Scheitel deckende Kappe wahrnehmen kann.

Fig. 153. Medianer Längsschnitt durch die Wurzel des Farnes Pteridium creticum. t Scheitelzelle, k Haubeninitiale, kn Wurzelhaube. Vergr. 240. Nach STRASBURGER.
Die besonders auffälligen Kappen an den Enden der Wasserwurzeln unserer Wasserlinsen (Lemna-Arten) und mancher Hydrocharitaceen gehören dagegen ihrem Ursprung nach nicht zur Wurzel; sie bilden sich vielmehr aus einer die Wurzelanlage umgebenden Hülle, etwa aus Sproßgewebe, und werden demgemäß als Wurzeltaschen bezeichnet. Wurzeln ohne Wurzelhaube sind eine sehr seltene Erscheinung; sie kommen z. B. vor bei den eben erwähnten Wasserlinsen, bei denen die Wurzeltasche die Funktionen der Wurzelhaube übernimmt. Ebenso fehlt eine Wurzelhaube der rasch absterbenden Wurzel des parasitisch lebenden Teufelszwirns (vgl. S. 162).

In Zeiten der Ruhe, wo die Erdwurzeln nicht weiterwachsen, werden die Wurzelhauben verkorkt; ihre parenchymatischen Zellen wandeln sich in Kutisgewebe um, das die Wurzelspitzen wirksam nach außen abschließt.[81]

Der Vegetationspunkt der Wurzel wird, wie schon gesagt, aus Meristemzellen aufgebaut, von denen sich die basalwärts gelegenen in Dauerzellen des Wurzelkörpers, die an der Spitze in die Dauerzellen der Wurzelhaube umwandeln.

[S. 114]

Bei den meisten Pteridophyten haben die Wurzeln wie die Sprosse eine dreischneidige Scheitelzelle (t Fig. 153) von der Gestalt einer dreiseitigen Pyramide.

Außer den Segmenten, die sie parallel zu ihren drei inneren Seitenwänden nach dem Wurzelkörper hin abgibt, bildet sie solche auch nach außen (k). Letztere bauen die Wurzelhaube auf, indem sie sich weiter teilen.

Die Vegetationspunkte der Phanerogamenwurzeln besitzen dagegen keine Scheitelzellen. Sie bestehen aus gleichwertigen embryonalen Zellen, die oft in regelmäßigen Schichten angeordnet sind.

Als Beispiel sei auf den Vegetationskegel einer Gramineen-Wurzel (Fig. 154) hingewiesen: Die Meristemschichten, die das Dauergewebe des Wurzelkörpers liefern, sondern sich hier in eine äußere Zellschicht, das Dermatogen (d), in mehrere zentrale Schichten, die einen Gewebestrang für sich bilden und sämtlich oder teilweise in den Zentralzylinder der Wurzel übergehen, das Plerom (pl), und in mehrere zwischen Dermatogen und Plerom gelegene Schichten, das Periblem. Die Schichten des Dermatogens (d Fig. 154) und Periblems (pr) vereinigen sich am Scheitel zu einer einzigen Zellschicht. Außerhalb davon liegt die Zellschicht, die die Wurzelhaube bildet, das Kalyptrogen (k).

Bei vielen anderen Wurzeln (bei der Mehrzahl der Dikotylen) wird dagegen die Wurzelhaube durch Vermehrung der Schichten des Dermatogens gebildet, das auch an der Spitze des Scheitels vom Periblem getrennt sein kann; bei manchen nimmt auch das Periblem, ja unter Umständen selbst das Plerom an der Bildung der Haube teil, so bei vielen Leguminosen und bei den Gymnospermen. Bei diesen sind Periblem, Dermatogen und Kalyptrogen am Scheitel überhaupt nicht gesondert; der Pleromzylinder schließt aber fast stets mit deutlich abgegrenzten Initialen ab.

Fig. 154. Medianer Längsschnitt durch die Wurzelspitze der Gerste. k Kalyptrogen, d Dermatogen, c dessen verdickte Außenwand, pr Periblem, pl Plerom, en Endodermis, i mit Luft sich füllende Interzellularen, a Zellreihe, aus der das zentrale Gefäß hervorgehen wird, r abgestoßene Zellen der Wurzelhaube, s große, leicht bewegliche Stärkekörner in den Haubenzellen. Vergr. 180. Nach STRASBURGER u. KOERNICKE.
2. Äußerer Bau des Wurzelkörpers. Die embryonalen Zellen wandeln sich an der Basis des Vegetationskegels unter starker Größenzunahme allmählich in Dauerzellen um. Hiermit geht eine ausgiebige Verlängerung des Wurzelkörpers Hand in Hand. Durch dieses Streckungswachstum, das also erst hinter dem Vegetationskegel[S. 115] einsetzt und bei den Erdwurzeln im Gegensatze zu den Luftsprossen auf eine sehr kurze, höchstens 5–10 mm lange Zone dicht hinter dem Vegetationspunkt beschränkt ist, wird die Wurzel zu einem zylindrischen, fadenförmigen, farblosen Gebilde.

Bei Luftwurzeln kann die Streckungszone aber viele Zentimeter lang werden. Ihre geringe Länge bei den Erdwurzeln hängt offenbar mit der Lebensweise dieser Wurzeln im Boden zusammen.

In einiger Entfernung von der Wurzelspitze, etwa da, wo das Streckungswachstum erlischt, entstehen an den Erdwurzeln wichtige Anhangsgebilde der Wurzeln, die Wurzelhaare[82] (r in Fig. 155 und Fig. 51): lokale schlauchförmige, sehr dünnwandige und schleimüberzogene Ausstülpungen der lebenden Epidermiszellen. Besonders an Keimpflanzen, die in feuchtem Raume kultiviert werden, z. B. vom Weizen, kann man sie in ungeheuer großer Menge (bei Zea mays etwa 420 pro qmm) mit bloßem Auge als zarten Flaum auf der Oberfläche der Wurzeln gut erkennen. Ihre Länge schwankt je nach den Pflanzenarten zwischen 0,15 und 8 mm. Sie vergrößern in sehr wirksamer Weise die Oberfläche der Wurzeln (bei Pisum z. B. um das zwölffache). Diese Haare dringen zwischen die Bodenpartikelchen ein, ja verwachsen sogar mit ihnen. Im Boden bewahren sie infolgedessen nicht Zylinderform, wie in feuchter Luft, sind vielmehr hin und her gekrümmt und an der Spitze abgeplattet, keulig oder lappig (Fig. 237). Sie dienen der Wasser- und Bodensalzaufnahme, haben aber nur wenige Tage Lebensdauer. In dem Maße, wie spitzenwärts neue Wurzelhaare hinzukommen, sterben die älteren ab, so daß immer nur ein begrenzter Teil der jungen Wurzel (einige Zenti- oder Millimeter) von ihnen bedeckt ist. Der ältere kahle Teil dient lediglich noch der Leitung, nicht mehr der Aufnahme von Wasser. An ihm ist sehr häufig eine Querrunzelung der Oberfläche erkennbar, die durch eine nachträgliche Kontraktion dieser Wurzelteile bedingt wird. Durch diese Kontraktion verkürzt und spannt sich die Wurzel wie ein gespannter Bindfaden straff und verankert den Sproß wesentlich fester im Boden (vgl. Fig. 205, 6).

Manchen Pflanzen fehlen die Wurzelhaare, vor allem solchen, die besonders leicht Wasser aufnehmen können, so vielen Wasser- und Sumpfpflanzen. Die Wurzeln mancher Wasserpflanzen, z. B. von Nuphar luteum, bilden aber dann Haare, wenn sie in den Boden eindringen; die Wurzeln von Sumpfpflanzen, wie Carex paludosa, wenn es an Wasser fehlt. Bei gewissen Wasserpflanzen, z. B. bei Hydrocharis, tragen aber auch die Wasserwurzeln reichlich Wurzelhaare.

Fig. 155. Keimpflanze der Hainbuche (Carpinus betulus). h Hypokotyl, c Kotyledonen, hw Hauptwurzel, sw Seitenwurzeln, r Wurzelhaare, e Epikotyl, l und l′ Laubblätter. Nat. Gr. Nach NOLL.
3. Primärer innerer Bau der Wurzel. Haben sich die embryonalen Zellen des Vegetationspunktes in Dauerzellen umgewandelt, so sind in der Wurzel die gleichen Gewebearten wie in der Sproßachse, und zwar auch meist in radiär symmetrischer Anordnung gesondert.

Der äußere Abschluß wird an jüngeren Teilen der Wurzel durch die dünnwandige Epidermis gebildet, die samt ihren Anhangsgebilden, den Wurzelhaaren, der Stoffaufnahme dient. Bezeichnend für sie ist der[S. 116] Mangel der Spaltöffnungen und der Kutikula. Die Epidermis der Wurzel stirbt aber mit den Wurzelhaaren bald ab. Wo letztere verschwunden sind, nimmt ein Kutisgewebe, nämlich die äußerste Rindenschicht, deren Zellwände mehr oder weniger verkorken, als Exodermis (Fig. 156 cx) die Oberfläche ein[83].

In einer solchen Exodermis werden oft unverkorkte Zellen ausgespart, die als Durchlaßzellen gelten. Sie sind in bestimmten Fällen regelmäßig zwischen den verkorkten verteilt und kleiner als diese.

Das übrige Gewebe kann man wieder in Rinde und Zentralzylinder einteilen.

Die Rinde der Erdwurzeln wird von farblosem Gewebe gebildet, das fast immer parenchymatisch ist und nur in den inneren Teilen Interzellularen enthält. In manchen Fällen erweitern sich die letzteren zu Luftlücken oder Luftkanälen. In der Rinde vieler Luftwurzeln kommt dagegen Chlorophyll vor. Manchmal werden Festigungsgewebe ausgebildet (Fig. 159, 2), die die Epidermis oder Exodermis verstärken und die Wurzeln biegungs- und druckfest machen. Die innerste Rindenschicht pflegt eine Endodermis[84] zu sein (Fig. 156 e, 157 e, 158 S, 160 s), die eine scharfe Grenze zwischen Rinde und Zentralzylinder zieht. Sie besteht aus rechteckig prismatischen, gewöhnlich etwas gestreckten Zellen, die auf Querschnitten die dunklen CASPARYschen Punkte in den radialen Wänden zeigen. Durch diese Membranstreifen (vgl. S. 49) scheint ein gewisser Abschluß des Zentralzylinders gegen die primäre Rinde erreicht zu werden; die tangentialen Wände der jungen Endodermis aber erlauben dem Wasser den Durchtritt aus der Rinde in den Zentralzylinder und umgekehrt.

Fig. 156. Querschnitt durch eine Wurzel der Küchenzwiebel (Allium Cepa), ep Reste der Epidermis, ex Exodermis, c Rinde, e Endodermis, cc Zentralzylinder. Vergr. 45. Nach M. KOERNICKE.

Fig. 157. Querschnitt durch die Wurzel von Acorus Calamus. m Mark, s Gefäßstränge, v Siebstränge, p Perizykel, e Endodermis, c Rinde. Vergr. 90. Nach STRASBURGER.

In etwas älteren Wurzelteilen werden die Endodermiszellen durch Suberinlamellen verkorkt und, bei vielen Monokotylen, außerdem durch tertiäre Verdickungsschichten meist einseitig nach dem Zentralzylinder zu verdickt (Fig. 160). Treten solche Veränderungen frühzeitig auf, so bleiben bestimmte, vor den Gefäßsträngen des Leitbündels gelegene Endodermiszellen, die Durchlaßzellen, davon ausgeschlossen (d Fig. 160).

Die äußerste parenchymatische Zellschicht des Zentralzylinders der Wurzeln (Fig. 157 p, 158 pc, 160 p), also die Schicht direkt unter der Endodermis, bildet den Perizykel, der meist einschichtig ist, in seltenen Fällen auch fehlen kann. Im Zentralzylinder verlaufen in gerader Längsrichtung die[S. 117] Leitungsbahnen, die als Gefäß- und als Siebstränge ausgebildet sind und bei allen Wurzeln ein radiales Leitbündel[61] bilden (vgl. S. 85). Die Gefäß- und Siebstränge sind also in das übrige Gewebe des Zentralzylinders radial nebeneinander und zwar so eingebettet, daß sie voneinander durch eine bis mehrere Zellschichten (meist Leitparenchym) getrennt bleiben. Die plattenförmigen Gefäßstränge sind in der Wurzel umgekehrt wie in den kollateralen Leitbündeln des Stengels orientiert: im Stengel haben sie ihre engsten Gefäße innen, die weitesten außen, in der Wurzel dagegen die weitesten Gefäße innen, die engsten am Umkreis des Leitbündels. Von außen nach innen folgen also Ring-, Schrauben-, Netz- und Tüpfelgefäße aufeinander. Auch die Phloëmprimanen liegen peripher, am Außenrande der Siebstränge, die rundlichen Querschnitt haben. Nach der Zahl der vorhandenen Xylemstränge wird die Wurzel als diarch, triarch usw., schließlich als polyarch bezeichnet. So ist die in Fig. 157 dargestellte Wurzel oktarch, die der Fig. 160 pentarch. Die Gefäßstränge stoßen in der Mitte der Wurzel entweder zusammen, wie in Fig. 158 u. 160; oder es ist dort, wie die Fig. 157 zeigt, ein zentraler Strang aus Parenchym oder Sklerenchym, oft auch aus beidem vorhanden. Die meisten Wurzeln werden vor allem auf Zugfestigkeit in Anspruch genommen. So ist das Festigungsgewebe hauptsächlich in das Zentrum der Wurzel verlegt, wo es durch seine geschlossene Masse die Wurzeln am besten vor Zerreißung schützt (Fig. 159).

Fig. 158. Querschnitt durch das radiale Leitbündel der Wurzel von Ranunculus acer. R Rindenparenchym, S Endodermis, pc Perizykel, ph Phloëm, px Xylemprimanen, G Tüpfelgefäße. Vergr. 200. ROTHERT frei nach DIPPEL.

Fig. 159. Mechanisches Gewebe der Wurzel. 1 Zentral angeordnet für Zugfestigung. 2 Neben dem zentralen Strang ein peripherer Mantel P für Druck- und Biegungsfestigung (Stützwurzel). Nach NOLL.

Für ein Organ, das zugfest sein soll, ist es an und für sich ziemlich gleichgültig, wo auf dem Querschnitt die Festigungsmassen liegen. Immerhin ist ihre Vereinigung im Zentrum zu einem einzigen Strang jeder anderen Anordnung überlegen. Wären nämlich statt dessen z. B. viele entsprechend dünnere Stränge an der Peripherie verteilt, so würden einzelne bei einem einseitigen Zuge der Gefahr der Zerreißung ausgesetzt sein.

Fig. 160. Radiales Leitbündel der Wurzel von Allium ascalonicum. s Endodermis mit verdickten Innenwänden, d Durchlaßzellen, p Perizykel, g großes zentrales Gefäß. ROTHERT nach HABERLANDT.

Fig. 161. Übergang des radialen Wurzelleitbündels in die kollateralen Stengelbündel, schematisiert: nach Beschreibungen VAN TIEGHEMs und CHAUVEAUDs. Weiß: Rinde und Mark. Schwarz punktiert: Phloëm. Weiß punktiert auf Schwarz: Xylem. Weitere Erklärung im Text.
Es bleibt noch zu erörtern, wie die Sieb- und Gefäßstränge des radialen Wurzelbündels in die Sieb- und Gefäßstränge der anders gebauten Stengelbündel übergehen[85].[S. 118] Das geschieht meist an der Grenze der Keimwurzel und des Keimstengels; es sei nur für den häufigsten Fall, für Pflanzen mit kollateralen Stengelbündeln, kurz beschrieben. Das Wesentliche dieses Überganges besteht darin, daß die Gefäßstränge des radialen Wurzelbündels sich in der Übergangszone je um ihre eigene Längsachse, und zwar um annähernd 180° drehen (vgl. Fig. 161); dadurch werden aus den exarchen Gefäßsträngen der Wurzel (vgl. S. 90) die endarchen Stränge des Stengels. Die ältesten Xylemprimanen der Wurzel beteiligen sich nach CHAUVEAUD an dieser Bewegung nicht, sondern werden aufgelöst. Aus dem radialen Wurzelbündel werden nun dadurch eine Anzahl kollateraler Bündel gebildet, daß die Sieb- und Gefäßstränge, die in der Wurzel nebeneinander liegen, sich gegeneinander verlagern. Diese Verlagerung vollzieht sich bei den verschiedenen Arten verschieden. Zwei Haupttypen lassen sich nach VAN TIEGHEM unterscheiden: 1. Die Gefäßstränge verlaufen, abgesehen von ihrer Drehung, geradlinig aus der Wurzel in den Stengel; die Siebstränge der Wurzel aber spalten sich durch einen radialen Spalt je in zwei Hälften; die Hälften weichen tangential auseinander und legen sich vor die benachbarten gedrehten Gefäßteile, wo sie sich je mit der Hälfte des nächst benachbarten Siebstranges vereinigen (Fig. 161 A). 2. Die Siebstränge der Wurzel verlaufen geradlinig in den Stengel; aber die Gefäßteile (Fig. 161 B) spalten sich durch einen radialen Spalt in je zwei Hälften; diese Hälften drehen sich darauf je um 180° mit den Primanen als Drehpunkt, weichen, ähnlich wie bei den Siebsträngen unter 1, tangential auseinander und legen sich alsdann hinter die benachbarten Siebstränge, wo sie sich je mit der Hälfte des nächst benachbarten[S. 119] Gefäßstranges vereinigen. Eine Abart dieses verbreitetsten Typus kommt durch gleichzeitige Spaltung auch der Siebstränge (wie bei 1) zustande, so daß im Stengel doppelt so viele kollaterale Bündel wie Gefäßstränge (oder Siebstränge) in der Wurzel entstehen.

4. Verzweigung der Wurzel. Durch Verzweigungen, die immer wieder Wurzeln (gleichnamige Organe) sind, wird es der Wurzel ermöglicht, den Bodenraum nach allen Richtungen zu durchdringen und überall daraus Wasser und Bodensalze aufzunehmen.

Dichotome Verzweigung durch Gabelung der Vegetationskegel in je zwei Schenkel findet sich typisch bloß bei einigen Farnpflanzen (Lycopodinae).

Im übrigen verzweigen sich die Wurzeln seitlich (Fig. 155). Und zwar werden die Seitenwurzeln im Gegensatze zu den Seitenzweigen am Sprosse meist erst in einiger Entfernung vom Vegetationspunkte der Mutterwurzel, wo das Gewebe des Urmeristems bereits in Dauergewebe übergeht, im Innern des Gewebekörpers der Mutterwurzel, endogen (Fig. 162, 163), angelegt. Ihre Vegetationspunkte bilden sich nämlich bei den Pteridophyten aus der innersten Rindenschicht, bei den Phanerogamen dagegen aus der äußersten Zellschicht des Zentralzylinders, d. h. aus dem Perizykel der Mutterwurzel, indem hier Gruppen von Parenchymzellen sich zu teilen und in embryonalen Zustand zurückzukehren beginnen. Die Seitenwurzelanlagen müssen also immer die ganze Rinde ihrer Mutterwurzel durchbrechen. Demgemäß sind sie nicht selten an der Austrittsstelle von dem vorgestülpten Rande der durchbrochenen Rinde der Mutterwurzel wie von einem Kragen umgeben. Sie entstehen in dieser Weise zunächst spitzenwärts fortschreitend, also in akropetaler Reihenfolge. Sie pflegen auch in solcher, ihrem Alter entsprechenden Reihenfolge zu Wurzeln auszuwachsen. Später werden sie aber noch durch solche Seitenwurzeln vermehrt, die zwischen den bereits vorhandenen selbst an älteren Wurzelteilen hervorkommen.

Fig. 162. Wurzelquerschnitt von Vicia Faba mit Seitenwurzelanlage r, etwas schematisiert, e Endodermis, p Perizykel, d Rinde, g Gefäßstrang, v Siebstrang des radialen (tetrarchen) Leitbündels. Vergr. 40.

Fig. 163. Teil eines Längsschnittes durch eine Wurzel von Amarantus mit Anlage einer Seitenwurzel. e Endodermis, vor der Seitenwurzelanlage bereits resorbiert, d angrenzende Rinde, p Perizykel, sp Schraubentracheïde, r Seitenwurzelanlage. Vergr. etwa 200. Nach PH. VAN TIEGHEM.

Die Seitenwurzeln bilden immer gerade Reihen an der Mutterwurzel[86]. Diese Anordnung wird dadurch bedingt, daß die Nebenwurzeln entweder vor den längs verlaufenden Gefäßsträngen der Mutterwurzel (Fig. 162) oder vor den Leitparenchymplatten entstehen, die die Xylem- und Phloëmstränge trennen. Die Zahl der Seitenwurzelreihen ist also entweder gleich der Zahl der Xylemstränge oder doppelt so groß.

Die Seitenwurzeln haben den gleichen Bau wie die Hauptwurzel. Ihre Gefäß- und Siebstränge setzen sich an entsprechende Stränge der Mutterwurzel an.

5. Sproßbürtige Wurzeln. Außer an Wurzeln entstehen Wurzeln sehr oft auch an ungleichnamigen Organen, d. h. an Teilen des Sprosses, ebenfalls meist endogen aus Dauergewebe; bei den Farnen schon aus dem embryonalen Gewebe der Sproßvegetationspunkte. Man nennt solche Wurzeln je nach dem Orte ihrer Entstehung stengelbürtig oder blattbürtig.

[S. 120]

Bei Sumpf- und Wasserpflanzen entspringen sie vielfach an den unteren Stengelknoten zwischen den Blättern. Ein bevorzugter Ort ihrer Entstehung, soweit die äußeren Bedingungen es zulassen, sind überhaupt Stengelknoten; sie können das mit den unteren Sproßpartien absterbende Hauptwurzelsystem ersetzen[87]. Besonders zahlreich sind sie an den Unterseiten der im Boden wachsenden Sproßteile (Rhizome, Fig. 143) oder kriechender Sprosse. Abgeschnittene und in feuchten Boden gesteckte Sprosse oder Sproßstücke bilden alsbald Wurzeln an ihrer Basis; solche brechen auch aus der Basis mancher entsprechend behandelter Blätter, so der Begonienblätter, hervor[88]. Die sproßbürtigen Wurzeln bezeichnet man wohl auch als Adventivwurzeln.

Kommen vorhandene Wurzelanlagen nicht zur Entwicklung, so nennt man sie schlafend. Solche ruhenden Anlagen von stengelbürtigen Wurzeln sind z. B. an jedem Weidenzweige vorhanden; ihre Weiterentwicklung läßt sich durch Feuchtigkeit und Verdunkelung leicht anregen.

6. Aussehen der Wurzelsysteme. Die Seitenwurzeln irgendeiner Ordnung wachsen in der Regel schwächer und sind dünner als die Mutterwurzeln, an denen sie entstanden sind. So wird das ganze Wurzelsystem typisch razemös. Die Nebenwurzeln letzter Ordnung bleiben gewöhnlich sehr kurz und haben nur eine begrenzte Lebensdauer; man nennt sie Saugwürzelchen.

Das Wurzelsystem erhält sein Gepräge, wie das Sproßsystem, weiter dadurch, daß Haupt- und Seitenzweige ganz verschiedene Lage zueinander und im Raume annehmen, und zwar durch verschiedene Art von Geotropismus (vgl. S. 299 ff.).

Viele Dikotylen (z. B. Lupine, Eiche) und Gymnospermen (Edeltanne) haben eine radiäre Hauptwurzel oder Pfahlwurzel, die schon als Keimwurzel den Hauptstamm nach unten fortsetzt und senkrecht nach unten, orthotrop, in die Erde wächst (Fig. 155). An ihr entstehen ebenfalls radiäre Seitenwurzeln I. Ordnung, die horizontal oder schräg, also plagiotrop, in das Erdreich eindringen. Die an ihnen entspringenden Seitenwurzeln II. Ordnung pflegen von denen I. Ordnung allseits ausstrahlend das Erdreich rings um diese zu durchwachsen, so daß also die Äste des Wurzelsystems den Boden nach allen Richtungen möglichst gleichmäßig durchziehen und bei weitergehender Verzweigung keinen Kubikzentimeter unausgenutzt lassen. Bei anderen Dikotylen und Gymnospermen kann das Wurzelsystem auch mehr oberflächlich bleiben (z. B. bei der Kartoffelpflanze und bei der Kiefer).

Den Monokotylen pflegt die Hauptwurzel zu fehlen, da sie schon am Keimling zugrunde geht. An ihre Stelle treten zahlreiche sproßbürtige Wurzeln aus der Stengelbasis, die senkrecht oder schräg oder horizontal in den Boden eindringen. Sie verzweigen sich monopodial und tragen Seitenwurzeln I. Ordnung, diese Seitenwurzeln II. Ordnung usw., die das Erdreich in allen möglichen Richtungen durchwachsen können. Hauptsächlich in horizontaler Richtung breitet sich das Wurzelsystem z. B. beim Getreide über immer größer werdende Areale aus.

Addiert man die Längen sämtlicher Wurzeln einer Pflanze, so bekommt man unerwartet hohe Werte; so kann die Gesamtwurzellänge bei einer Getreidepflanze Hunderte von Metern sein.

Eigenartig wird ein Teil der Wurzeln bei vielen Bäumen der tropischen Urwälder ausgebildet. Die außerordentlich hohen und dicken Stämme vieler solcher Bäume sind an der Basis durch mächtige, strebenähnliche Brettwurzeln oder durch stammartig verdickte, von den Ästen zur Erde herabgewachsene Luftwurzeln (Säulen- oder Stützwurzeln) vor dem Umfallen geschützt (z. B. bei vielen Ficus-Arten, vgl. Fig. 694).

c) Sekundäres Dickenwachstum des Kormus.

Wir sahen, daß die Sproß- und Wurzelteile, die in den Vegetationspunkten durch Vermehrung der embryonalen Zellen neu angelegt worden[S. 121] sind, durch Streckung fertig ausgebildet werden. Mit diesem Längenwachstum ist meist auch ein gewisses Dickenwachstum der Teile verbunden, das wie das Längenwachstum lediglich auf der bedeutenden Vergrößerung der meristematischen Zellen während ihrer Umbildung zu Dauerzellen, aber nicht auf Zellvermehrung beruht (primäres Dickenwachstum oder Erstarkung, Fig. 98, 100, 102, 115). Es ist freilich meist verhältnismäßig gering. An diese Dickenzunahme schließen sich in Sproßachsen und Wurzeln oft noch andere Wachstumsvorgänge an, denen wir nun unsere Aufmerksamkeit zuwenden müssen.

Je größer das Sproßsystem wird, um so besser vermag es der Beschattung durch andere Gewächse zu entgehen und um so mehr organische Substanz zu bilden. So sehen wir bei vielen Gewächsen aus einem zunächst kleinen, blattarmen Keimpflänzchen durch Wachstum, oft auch durch Verzweigung der Keimlingsachse, einen sehr blattreichen Kormus von riesigen, baumartigen Größenverhältnissen sich entwickeln. Die Größenzunahme des Sprosses im Luftraume stellt infolge Vermehrung der Blätter fortgesetzt höhere Anforderungen an die Wasserversorgung durch die Wurzel, der diese nur durch die Vergrößerung ihrer Oberfläche, meist verbunden mit Verzweigung, genügen kann; oft werden sogar noch sproßbürtige Wurzeln gebildet. Jede Vergrößerung des Wurzelsystems hat aber zur Vorbedingung, daß dazu hinreichende Mengen organischer Nährstoffe in den Blättern gebildet werden können. So stehen die Ausbildung der Blattkrone und des Wurzelsystems in engsten Wechselbeziehungen zueinander. Die Größenzunahme des Sproß- und Wurzelsystems hat ferner zur Voraussetzung, daß in den Stengeln und Wurzeln die genügende Anzahl von Leitungsbahnen einerseits für Wasser, andererseits für die organischen Stoffe vorhanden ist oder ausgebildet werden kann, und daß die Sproßachsen fest genug sind, um das größer und größer werdende Gewicht der Blatt- und Zweigmassen, auch bei heftigem Winde, zu tragen. Es bestehen also auch enge Beziehungen zwischen der Größe des Kormus und der Ausbildung der Leitungsbahnen in seinen Achsen und der Festigkeit der Sprosse.

Die Festigkeit muß um so größer sein, je größer die Pflanze wird und je länger sie lebt. Pflanzen oder Sproßsysteme, die nur verhältnismäßig kurze Zeit leben und nach Bildung der Fortpflanzungsorgane absterben, bleiben meist „krautartig“: Kräuter. Große Kormi, die viele Jahre leben und meist wiederholt fruktifizieren, erhöhen die Festigkeit ihrer Sproßachsen und Wurzeln meist durch Holzbildung. Solche Holzgewächse heißen Bäume[89], wenn sie einen Hauptstamm ausbilden (der Säulenfestigkeit besitzen muß); sonst nennt man sie Sträucher.

Die Lebensdauer der Gewächse[90] und die Beschaffenheit ihrer Sproßachsen wird in Pflanzenbeschreibungen und Katalogen gewöhnlich durch besondere Zeichen kenntlich gemacht. Kräuter sind: einjährige „annuelle“, zweijährige „bienne“ Pflanzen, ausdauernde „perennierende“ Stauden; Holzgewächse: Sträucher und Bäume. Einen besonderen Typus des Baumes finden wir in den säulenförmigen, meist unverzweigten Stämmen der Palmen und Farnbäume, denen mit dem sekundären Dickenwachstum ein echtes Holzgewebe fehlt.

Dem Bedürfnisse nach der nötigen Anzahl von Leitungsbahnen und der erforderlichen Festigung wird bei den Kormi der Sproßpflanzen in verschiedener Weise Rechnung getragen: Erstens nämlich gibt es Pflanzen, bei denen die Hauptachse des Keimlings und die etwa entstehenden Seitenzweige schon, ehe sie in die Länge wachsen, vor oder während ihrer Erstarkung, also primär, so verdickt und mit so viel Leitungs- und Festigungsgewebe ausgestattet werden, daß sie bei ihrem späteren Längenwachstum der ganzen künftigen[S. 122] Größenzunahme des Kormus genügen; die Keimwurzel bleibt bei ihnen aber dünn, stirbt meist frühzeitig ab und wird durch sproßbürtige Wurzeln aus der Basis oder auch aus höheren Zonen der Keimlingssproßachse ersetzt. Zweitens gibt es solche, bei denen zunächst lange, fadenförmig dünne Stengel und Wurzeln mit wenigen Leitungsbahnen (und wenigen mechanischen Elementen) entwickelt werden. Die Wasserversorgung der Blätter und umgekehrt die Nahrungsversorgung des Wurzelsystems und hiermit die Größenzunahme des Kormus würden bei ihnen meist sehr bald eine Grenze in der geringen Zahl der Leitungsbahnen des Keimstengels und der Keimwurzel finden, wenn nicht nach Umwandlung der Keimachse in Dauergewebe, entsprechend den Bedürfnissen des heranwachsenden Kormus, später für Vermehrung der Leitungsbahnen (und des Festigungsgewebes) im Wurzelsysteme und im Keimstengel gesorgt würde. Das geschieht aber durch nachträgliche Zellvermehrung, Bildung sekundärer Gewebe (des Sekundärzuwachses), womit ein nachträgliches, sekundäres Dickenwachstum der Stengel und Wurzeln verbunden ist. Sekundäre Gewebe nennt man solche Gewebe, die durch Tätigkeit sekundärer Meristeme, der Kambien (vgl. S. 40), den primären Geweben hinzugefügt werden oder die primären Gewebe ersetzen. Sekundäres Dickenwachstum findet sich sowohl bei krautigen als auch bei Holzpflanzen.

Zum ersten Typus[91] gehören die meisten krautigen Pteridophyten und Monokotylen, ja selbst fast alle ihre stammbildenden Formen (Baumfarne, Palmen, Pandanaceen, bestimmte Liliifloren). Bei den stammbildenden Monokotylen z. B. bleibt der Keimstengel nach der Keimung zunächst lange Zeit sehr kurz. Das Urmeristem seines flachen Vegetationspunktes wächst an der Peripherie des Zentralzylinders durch Zellvermehrung stark in die Breite. Infolgedessen erhält der Vegetationspunkt und die Sproßachse des Keimlings, aus der der Stamm hervorgehen soll, von vornherein einen sehr großen Durchmesser.

Bei solchen Formen, wie z. B. bei den Palmen und Pandanaceen, kann der Stamm auch nach Ausbildung der Dauergewebe durch Erweiterung der vorhandenen Dauergewebszellen noch längere Zeit ein wenig weiter erstarken. Hauptsächlich die Zellen der Sklerenchymfaserstränge, die die Siebteile der Leitbündel begleiten, nehmen dabei an Weite zu, wodurch die ganzen Stränge mächtiger werden. Hier und da freilich kann die Dickenzunahme von Teilungen der Parenchymzellen begleitet sein (manche Palmen).

Zum zweiten Typus[92] gehören die meisten krautigen und holzbildenden Gymnospermen, Dikotylen und einige baumförmige Liliifloren. Bei ihnen folgt also auf das primäre Dickenwachstum (die Erstarkung) der Stengel und Wurzeln durch Zellvergrößerung meist ein sekundäres durch Zellvermehrung in einer besonderen Meristemzone, dem Verdickungsring.

Einjährige, kletternde und windende Pflanzen beginnen oft erst in ziemlich alten Internodien, lange nach Beendigung der Erstarkung, sekundär in die Dicke zu wachsen. An den Zweigen der Bäume fängt das sekundäre Dickenwachstum dagegen meist schon an, ehe die primären Dauergewebe ausgebildet worden sind.

Sekundäres Dickenwachstum trat zuerst bei gewissen, jetzt nur aus fossilen Überresten bekannten Pteridophyten auf; aber erst bei den Gymnospermen und Dikotylen gelangte es zu allgemeiner Verbreitung.

Sekundäres Dickenwachstum monokotyler Stämme. Es gibt auch einige baumartige Liliifloren (Dracaena, Cordyline, Yucca, Aloë), deren Achsen befähigt sind, mit einem sekundären Meristem sekundär in die Dicke zu wachsen. Dieses Meristem entsteht außerhalb der primären Leitbündel, die im Zentralzylinder nach Monokotylenart zerstreut sind, und zwar in der anschließenden Rinde, aus einer im Querschnitte ringförmigen Zone von fertigen Rindenzellen, die sich wieder zu teilen beginnen (bei den Dracaenen meist erst in größerer Entfernung vom Stammscheitel, sonst schon in seiner unmittelbaren Nähe).[S. 123] Es bildet einen Zylindermantel aus mehreren Schichten prismenförmiger, lückenlos verbundener, embryonaler Zellen, die durch tangentiale Wände längere Zeit nur Zellen nach innen, später auch einige nach außen abgeben. Das weitere Schicksal dieser so durch Teilung entstandenen embryonalen Zellen ist ein völlig anderes als bei den Gymnospermen und Dikotylen: Die von dem Meristem nach außen gebildeten Zellen werden nämlich zu sekundären Rindenzellen; die nach innen abgegebenen aber teils zu vollständigen konzentrischen Leitbündeln mit Außenxylem, teils zu Parenchym, dessen Zellwände sich stark verdicken und verholzen (Fig. 164).

Die Meristemzellen haben im Querschnitt und im radialen Längsschnitt rechteckige, im tangentialen Längsschnitt polygonale Gestalt; es sind also Prismen mit tangential gerichteter polygonaler Grundfläche (vgl. Fig. 167 A II). Solange das Meristem einseitig tätig ist, werden seine Initialen aus dem nach außen angrenzenden Dauergewebe der Rinde ergänzt. Sobald es beiderseitig tätig wird, bleibt dauernd eine Zellschicht als Initialschicht erhalten.

Ein echtes sekundäres Dickenwachstum monokotyler Wurzeln ist nur für die Gattung Dracaena bekannt. Der Kambiumring, der es besorgt, nimmt in der Wurzelrinde seinen Ursprung und zwar in den inneren Teilen, die an die Endodermis grenzen.

Fig. 164. Cordyline (Dracaena) rubra. Querschnitt durch den Stamm. f Leitbündel, und zwar f′ primäre, f″ sekundäre, f‴ ein aus einem Blatte kommendes, noch innerhalb der Rinde befindliches Bündel, m parenchymatisches Grundgewebe, s Leitbündelscheide, t Tracheïden, c Verdickungsring (Kambium), cr Rinde, ph Korkkambium, l Kork, r Rhaphidenbündel. Vergr. 30. Nach STRASBURGER.

Fig. 165. Querschnitt durch einen 5 mm dicken Zweig von Aristolochia Sipho. m Mark, fv Leitbündel, und zwar vl Gefäßteil, cb Siebteil, fc Faszikularkambium, ifc Interfaszikularkambium, p Phloëmparenchym an der Außenseite des Siebteils, pc Perizykel, sk Sklerenchymring, e Stärkescheide, c Rinde, in dieser cl Kollenchym. Vergr. 9. Nach STRASBURGER.

Sekundäres Dickenwachstum der Gymnospermen und Dikotylen. 1. Bildung, Bau und Tätigkeit des Kambiums in den Stengeln. In den offenen Leitbündeln der Gymnospermen und der Dikotylen kann die sekundäre Gewebebildung an die Fertigstellung der primären Gewebe anschließen oder schon früher beginnen. Nur der erstere Fall sei hier besprochen, obwohl er keineswegs häufig ist. Die zwischen den Gefäßteilen und Siebteilen der offenen[S. 124] Bündel vorhandenen Reste von Urmeristem werden dabei zu Kambien, indem sie sich von neuem lebhaft zu teilen beginnen. Die Leitbündel sind meist im Kreise angeordnet. Nachdem die Kambiumtätigkeit innerhalb der Bündel begonnen hat, bildet sich Kambium auch in den Markstrahlen. Eine Zone von Dauerzellen nämlich, die die Kambien dar angrenzenden Leitbündel verbinden, beginnt sich tangential zu teilen. Dieses interfaszikulare Kambium ergänzt so die innerhalb der Bündel gelegenen faszikularen Kambien zu einem vollen Zylindermantel von Meristemgewebe. Seine Zellen, die in radialer Richtung wachsen, teilen sich durch tangentiale und durch quere Scheidewände.

Fig. 166. Querschnitt durch ein Leitbündel eines Zweiges von Aristolochia Sipho im ersten Jahre seiner Entwicklung, nach begonnener Kambiumtätigkeit. p Xylemparenchym, an dem Innenrande des Gefäßteils, vlp Xylemprimanen, m′ und m″ Tüpfeltracheen, ic Interfaszikularkambium, sich in das Faszikularkambium fortsetzend, v Siebröhren, cbp Siebprimanen, pc Gewebe des Perizykels, sk innerer Teil des Ringes aus Sklerenchymfasern. Vergr. 130. Nach STRASBURGER.
Die Fig. 165 und 166 stellen den Vorgang der Kambiumbildung für den Stengelquerschnitt von Aristolochia Sipho dar, wo er sich in möglichst einfacher und übersichtlicher Weise vollzieht. Die Fig. 166 gibt ein einziges Leitbündel nebst dem angrenzenden Interfaszikularkambium aus der Fig. 165 bei stärkerer Vergrößerung wieder. In diesem Bündel ist die Kambiumtätigkeit bereits in vollem Gange. Besonders fallen die in Ausbildung begriffenen sekundären Gefäße (m″) auf. Innerhalb der Markstrahlen sind die Parenchymzellen, die dem Interfaszikularkambium den Ursprung gaben, noch deutlich zu erkennen.

[S. 125]

Die meristematischen Kambiumzellen des Verdickungsringes, die lückenlos verbunden sind und radiale Reihen bilden, pflegen die Gestalt langgestreckter, in tangentialer Richtung mehr oder weniger abgeplatteter Prismen zu haben mit beiderseits meißelförmig zugeschärften Enden, deren scharfe Kanten radial gestellt sind, so daß die Zellform auf Tangential-, Radial- und Querschnitten ganz verschieden erscheint (Fig. 167). Die tangentialen Wände, die die polygonalen oder rhombischen Grundflächen der Prismen bilden, sind dünn, die radialen, die senkrecht auf den Grundflächen stehen, dagegen ziemlich dick und oft getüpfelt. In dem mehrschichtigen Kambiummantel ist eine mittlere Zellschicht, die Initialschicht. Ihre Zellelemente, die in radialer Richtung wachsen, bleiben dauernd meristematisch und geben durch fortgesetzte Teilungen mittels tangentialer Scheidewände Tochterzellen (Gewebemutterzellen) in radialer Richtung nach außen, in viel größerer Zahl aber nach innen hin ab. Diese Tochterzellen werden ihrerseits, meist nach weiteren tangentialen Teilungen und nach oft starkem Längen- und Dickenwachstum (Fig. 172), allmählich zu sekundären Dauerzellen, deren Formen vielfach gar nicht mehr den embryonalen Kambiumzellen ähnlich sind.

Dadurch, daß das Kambium nach innen Zellen abgibt, wird es mit der Dickenzunahme des Stammes selbst immer weiter nach außen geschoben; dementsprechend muß sich der Umfang des Kambiummantels fortgesetzt vergrößern. Das ist nur möglich durch Wachstum und Vermehrung der Zellen in tangentialer Richtung. Auf Querschnitten durch das Kambium sieht es so aus, als käme diese Vermehrung durch gelegentliche radiale Teilungswände zustande. KLINKEN[93] und NEEFF haben uns aber darüber belehrt, daß solche Teilungen nicht vorkommen; soll die Zellenzahl tangential vermehrt werden, so teilt sich vielmehr eine Kambiuminitialzelle quer, worauf die Enden der Tochterzellen durch gleitendes Wachstum tangential aneinander vorbei wachsen.

Alles durch die Kambiumtätigkeit nach innen erzeugte Dauergewebe, das meist hart und fest ist und aus mehr oder weniger verholzten Zellen besteht, wird als Holz, alles nach außen gebildete Gewebe dagegen, das aus meist unverholzten Zellen besteht, als Bast bezeichnet.

Die vom Kambium nach außen abgegebenen Gewebe heißen wohl auch sekundäre Rinde.

Fig. 167. Schematische Darstellung der Form der Kambiumzellen. A I und II die beiden vorkommenden Formen körperlich, die tangentiale (Breit-)Seite zeigend; B Radialschnitt; C Querschnitt. Nach ROTHERT.
Das sekundäre Gewebe, das vom faszikularen Kambium nach innen gebildet wird, gleicht dem der Xylemteile, das nach außen gebildete dem der Siebteile der primären Leitbündel. Durch die Tätigkeit des Interfaszikularkambiums werden die Markstrahlen dauernd auf der Holz- und der Bastseite verlängert, allerdings meist nicht in ihrer ganzen Breite als Markstrahlen; denn der größere Teil auch des interfaszikularen Kambiums bildet nach innen und nach außen in der Regel ähnliche Gewebe wie das faszikulare. Da also in den Markstrahlen nur an beschränkten, voneinander isolierten Stellen radiale Stränge von Markstrahlgewebe gebildet werden, indem die Kambiumzellen eben nur hier nach außen und innen Markstrahldauerzellen liefern, werden die zunächst plattenförmigen Markstrahlen in zahlreiche neben- und übereinander liegende kleinere, bandförmige, von spindelförmigem Querschnitt zerlegt (Fig. 168), die das Mark mit der Rinde verbinden und als primäre Markstrahlen des Holzes und des Bastes gelten. Bei zunehmender Dicke des Holz- und Bastringes beginnen aber auch einzelne Streifen des Faszikular[S. 126]kambiums, Markstrahlgewebe zu erzeugen. So werden die sekundären Markstrahlen gebildet, die blind in dem Holze und Baste endigen und um so weniger tief in beide hineinreichen, je später sie angelegt wurden (Fig. 177).

Die Kambiumzellen, die Markstrahlzellen bilden, stehen den anderen an Länge nach und haben auch weniger steile, ja zum Teil selbst horizontale Endwände, weil die Kambiumzellen vor der Einschaltung neuer Markstrahlen quer- oder schräggeteilt werden.

Man kann nach dem primären Bau der Stengel, der Entstehung des Kambiums und der Art seiner Tätigkeit im wesentlichen drei Typen unterscheiden[94]: 1. Im Stengel entsteht zunächst ein Ring von kollateralen Leitbündeln, die durch breite Markstrahlplatten aus Dauergewebe voneinander getrennt sind; die Markstrahlen behalten auch während des sekundären Dickenwachstums im Stengel ungefähr ihre Breite, indem das interfaszikulare Kambium fast nur Markstrahlgewebe erzeugt, so bei vielen krautigen Pflanzen, unter verholzten fast nur bei Lianen. Bei den Kräutern, bei denen der innere Teil der Markstrahlen zwischen den primären Gefäßsträngen aus Sklerenchym besteht (vgl. S. 82), bildet das interfaszikulare Kambium in den Strahlen nach innen ebenfalls solches Gewebe. 2. Im Stengel entsteht wie bei 1. ein Kranz kollateraler Blattspurbündel, die durch sehr breite Markstrahlen voneinander getrennt sind. Noch ehe das primäre Dickenwachstum beendigt ist, entstehen aus dem zum Teil noch embryonalen Markstrahlgewebe, das nun kambialen Charakter annimmt, in jedem Markstrahle ein bis mehrere kleinere, tangential netzartig verbundene stammeigene Zwischenbündelchen, die den Raum des Markstrahles fast völlig ausfüllen und die in den Maschen zwischen sich sehr schmale bandartige primäre Markstrahlen mit spindelförmigem Querschnitt lassen (Fig. 168) (so bei vielen Kräutern und Holzgewächsen). 3. Im Stengel entsteht bei der Umwandlung des primären Meristemgewebes zu Dauergewebe von vornherein nicht ein Kranz kollateraler Bündel, sondern ein ringförmiges Bündelrohr, das man geradezu als konzentrisches Bündel mit Innenxylem und mit zentralem Marke bezeichnen muß. Dieses Rohr hat eine Schicht von embryonalem Gewebe zwischen Phloëm und Xylem, das spätere Kambium, und ist von sehr schmalen, spindelförmigen primären Markstrahlen durchsetzt oder kann auch alle primären Markstrahlen entbehren (so bei vielen Bäumen).

Fig. 168. Auflösung eines primären Markstrahles in viele kleine nach Beginn des sekundären Dickenwachstums. Tangentialer Längsschnitt schematisch. l, l Benachbarte primäre Leitbündel; pm primärer Markstrahl, durch die Tätigkeit des interfaszikularen Kambiums zerlegt in viele kleine spindelförmige Markstrahlen und in netzartig verbundene sekundäre Leitbündel.

Fig. 169. Schematische Darstellung des Dickenwachstums einer dikotylen Wurzel. In A bedeutet pr Rinde, e Endodermis. In A und B sind c Kambiumring, g′ Gefäßstrang, s′ Siebstrang, p Perizykel. In B bedeuten außerdem g″ Holz, s″ Bast, k Periderm (vgl. S. 138). Nach STRASBURGER.

[S. 127]

Die primären Gefäßteile ragen im sekundär verdickten Stengel als Vorsprünge in das Mark; man nennt sie in ihrer Gesamtheit Markkrone.

2. Bildung und Tätigkeit des Kambiums in der Wurzel. Wie wir gesehen haben (Fig. 157, 158), wechseln im Zentralzylinder der Wurzeln die Gefäß- und Siebstränge miteinander ab; sie sind durch Parenchymplatten voneinander getrennt. Beginnt nun eine solche Gymnospermen- oder Dikotylenwurzel sekundär in die Dicke zu wachsen, so bilden sich in diesen Parenchymplatten parallel zu ihren Flächen, also zwischen den Gefäß- und Siebsträngen, durch Teilung der Zellen Kambiumstreifen aus, die nach innen Holz, nach außen Bast erzeugen. Die Ränder der Kambiumstreifen treffen im Perizykel vor den Gefäßsträngen zusammen; hier werden die Perizykelzellen ebenfalls zu Kambiumzellen: Nun ist ein vollständiger Kambiummantel mit welligem Querschnitt da, der, wie beim Stengel, im ganzen Umkreis seine Tätigkeit ausüben kann (vgl. die dunkle Linie der schematischen Fig. 169 A). Die Einbuchtungen gleichen sich bald aus, so daß der Mantel kreisförmigen Querschnitt erhält (Fig. 169 B). Dem Holzkörper und dem Baste fehlen die eigentlichen primären Markstrahlen, doch werden wie im Stengel sekundäre erzeugt; bei manchen Pflanzen besonders große, plattenförmige vor den primären Gefäßsträngen (vgl. Fig. 169 B). Der Querschnitt durch eine Wurzel, die jahrelang in die Dicke gewachsen ist, läßt sich von einem Stammquerschnitt ohne eingehendere Untersuchung nicht unterscheiden; erst durch solche kann man inmitten der Wurzel das Vorhandensein ihrer eigenartigen primären Gefäßstränge feststellen.

Fig. 170. Querschnitt durch einen Stamm von Mucuna altissima. 1, 2, 3 aufeinanderfolgende Holzkörper. 1*, 2*, 3* aufeinanderfolgende Bastzonen. 3 und 3* innerhalb des Perizykels in Bildung begriffen. 3⁄4 nat. Gr. Nach SCHENCK.
Wiederholte Kambiumbildung in Stämmen und Wurzeln. Außer den allgemein verbreiteten Vorgängen des sekundären Dickenwachstums kommen in den Stämmen und in den Wurzeln bei Gymnospermen und Dikotylen auch andere vor, die als Anomalien dem normalen Typus gegenübergestellt werden. Sie kennzeichnen sich durch abweichende Verteilung und Tätigkeit der Kambien.

Bei einigen Cycadeen und bestimmten Gnetum-Arten unter den Gymnospermen, bei Chenopodiaceen, Amarantaceen, Nyctagineen, Phytolaccaceen und noch anderen Familien unter den Dikotylen hört der erste, in gewohnter Weise entstandene Kambiumring nach längerer oder kürzerer Zeit zu funktionieren auf. Es bildet sich ein neuer Kambiummantel meist im Perizykel, also außerhalb der Bastzone, oder in einem vom ersten Kambiummantel abstammenden Gewebe. Dieses Kambium erzeugt wiederum nach innen Holz, nach außen Bast, beides mit Markstrahlen. Alsdann erlischt es; wieder ein neues, außerhalb des neuen Bastmantels entstehendes Kambium tritt an seine Stelle. Der Vorgang wiederholt sich und führt zur Bildung konzentrischer Holz-Bastzonen. Solche treten uns z. B. an dem Fig. 170 dargestellten Stammquerschnitt einer zu den Papilionaceen gehörenden Liane, der Mucuna altissima, als Ringe deutlich entgegen. Konzentrische Holz-Bastmäntel findet man auch an manchen fleischigen Wurzeln, die zwei oder mehr Vegetationsperioden ausdauern. So bei der Runkelrübe (Beta vulgaris), wo man sie schon mit dem bloßen Auge auf Querschnitten sehen kann. Sie entstehen wie eben beschrieben; nur herrschen in diesen Zuwachszonen, ebenso wie im typischen sekundären Zuwachs anderer fleischiger Wurzeln, die Parenchyme vor, die vermehrt werden, um der Speicherung von Reservestoffen zu dienen.

[S. 128]

3. Das Holz. A. Gewebearten und deren Funktionen. Das Holz ist ein Gewebekörper von verwickeltem Bau. Es setzt sich bei den Dikotylen meist aus drei verschiedenen Gewebearten mit mehr oder weniger verholzten Membranen zusammen: 1. aus längsverlaufenden Strängen toter Gefäße (Fig. 171 g, tg), 2. aus längsverlaufenden Strängen meist toter Sklerenchymfasern: Holzfasern (h) und 3. aus längs- und in den Markstrahlen auch radialverlaufenden Strängen von Speicherparenchymzellen (hp): Holzparenchym und Markstrahlparenchym. Dementsprechend dient das Holz 1. zunächst wie die primären Gefäßteile der Leitbündel der Wasserleitung, außerdem aber auch 2. der Festigung der Stämme und der Wurzeln gegen Druck und Biegungen und 3. zur Aufspeicherung organischer Substanzen. Die Eigenschaften, die das Holz als Baumaterial für uns so wertvoll machen, werden aus seiner Festigungsfunktion verständlich.

Fig. 171. Tracheen, Tracheïden, Holzfasern und Holzparenchym der Dikotylen nebst ihren Übergangsformen, schematisch. Erklärung im Text. Nach STRASBURGER. (Verändert.)

Fig. 172. Schematische Darstellung des gleitenden Wachstums; für Holzfasern. A I und II jugendlicher Zustand der Zellen, B I und II nach dem gleitenden Wachstum ausgewachsen. I Im tangentialen Längsschnitte, II im Querschnitte in der punktierten Linie von I. Nach ROTHERT.

Die Zellarten, aus denen das Holz sich aufbaut, lassen sich am leichtesten untersuchen, wenn man das Holz mit SCHULZEschem Gemisch mazeriert (vgl. S. 35).

Die Gefäße sind Tüpfel-, seltener Netzgefäße, und zwar in der Regel teils sehr weite, kurzgliedrige und enge, mehr oder weniger langgliedrige Tracheen (Fig. 171 g, tg), teils enge, langgestreckte Tracheïden, die außer der Wasserleitung zugleich zur Festigung des Stammes dienen. Die Holzfasern (h) sind meist sehr eng und sehr langgestreckt, beiderseits nadelförmig zugespitzt und dickwandig mit schrägen, schmalen, spaltenförmigen[S. 129] Tüpfeln. Die Speicherparenchymzellen (hp) endlich sind rechteckig prismatisch oder spindelförmig, in Richtung des Strangverlaufs in der Regel gestreckt, dünn- oder dickwandig mit meist kleinen, rundlichen, einfachen Tüpfeln und sind reich an Reservestoffen (Stärke, Zucker oder Öl). Interzellularen kommen nur in den Parenchymsträngen vor.

Bei zahlreichen Leguminosen, bei Weiden, Pappeln, Ficus-Arten kommen im Holz als wasserleitende Elemente nur Tracheen vor.

Die Tracheïden und Holzfasern sind wesentlich länger als die Kambiumzellen, aus denen sie hervorgehen, oft bis über 1 mm lang. Diese größere Länge erreichen sie, ebenso wie die weiten Tracheen ihren Durchmesser, durch gleitendes Wachstum (S. 40 und Fig. 172). Bei der Bildung von Holzparenchym werden die Gewebemutterzellen des Kambiums wiederholt quer geteilt. Dieses Parenchym besteht also (vgl. Fig. 171 gh, hp) aus Zellreihen, denen man ihre Herkunft aus Kambiumzellen ansieht, da sie oben und unten mit zugespitzten Elementen endigen.

Die Scheidewände zwischen den Holz- oder Markstrahlparenchymzellen und den Gefäßen sind einseitig behöft getüpfelt, soweit Tüpfel vorhanden sind: die meist großen Tüpfel sind innerhalb der lebenden Zellen ohne Hof, behöft dagegen in den Gefäßen, zudem im Gegensatze zu den typischen beiderseits behöften Tüpfeln stets ohne Tori in den Schließhäuten. Die Scheidewände zwischen den Gefäßen und den Holzfasern und die zwischen den Holzfasern und den Parenchymzellen sind dagegen meist gar nicht getüpfelt.

Bei den Hölzern, die aus Gefäßen, Holzfasern und Parenchymzellen sich aufbauen, kann man nicht selten alle Übergänge zwischen solchen typisch ausgebildeten Elementen beobachten; dementsprechend gehen ihre Funktionen ineinander über. Neben mehr oder weniger weiten Hoftüpfeltracheen (g) kommen enge Tracheen vor. Diese (Fig. 171 tg) leiten über zu den Tracheïden (Fig. 171 gt, t). Schmale, stark zugespitzte Tracheïden (Fasertracheïden ft), die hauptsächlich der mechanischen Festigung dienen mögen, bilden einen Übergang zu den Holzfasern (h). Wenig verdickte Holzfasern, die ihren lebenden Inhalt behalten (die sog. Ersatzfasern ef), ohne oder mit Querwänden (gh), vermitteln den Übergang zu den Holzparenchymzellen (hp). Phylogenetisch sollen sich aber nach STRASBURGER[68] die Fasertracheïden nur von den Gefäßen, die Holzfasern dagegen nur durch Umbildung von Holzparenchymzellen ableiten lassen.

Bei den Gymnospermen kommen im Holze außer wenig Holz- und viel Markstrahlparenchym nur noch Tracheïden mit typischen Hoftüpfeln vor. Hier ist also die Arbeitsteilung noch nicht so weit fortgeschritten; die Festigung wird noch von den gleichen Elementen besorgt, die auch der Wasserleitung dienen. Ebenso ist es bei der Magnoliaceen-Gattung Drimys unter den Dikotylen.

B. Anordnung der Gewebearten im Holze. Bei den Gymnospermen (Fig. 173–175) hat das Holz der Stämme und Wurzeln also einen verhältnismäßig noch einfachen Bau. Die Tracheïden sind entsprechend ihrer Entstehung (Fig. 173 B) in regelmäßigen radialen Reihen angeordnet (Fig. 173 A), da sie nur in radialer Richtung, aber so gut wie gar nicht in tangentialer und longitudinaler wachsen; sie haben infolgedessen ähnliche Gestalt wie die Kambiumzellen (Fig. 167) und besitzen oft nur in ihren radialen Wänden große runde Hoftüpfel, so daß man diese vor allem in radialen Schnitten von der Fläche zu sehen bekommt (Fig. 70 B, 71 A).

Holzparenchym ist in den meisten Gymnospermenhölzern nur sehr spärlich vorhanden. Bei den Kiefern, Fichten und Lärchen umgibt es ausschließlich die schizogenen Harzkanäle, die das Holz zwischen den Tracheïden durchziehen (Fig. 173 Ah, 177 h) und mit radial in einzelnen breiten Markstrahlen verlaufenden in Verbindung stehen. Daher können große Harzmengen aus einem verwundeten Kiefern- oder Fichtenstamme ausfließen. Bei den anderen Koniferen ist die Bildung des Holzparenchyms auf einfache Zellreihen beschränkt, deren Zellräume sich weiterhin mit Harz füllen.

Außer den Tracheïden findet man in den Gymnospermenhölzern, wie gesagt, fast ausschließlich Markstrahlparenchym, das in Form sehr zahlreicher, radial verlaufender, bandförmiger und meist nur eine Zellschicht[S. 130] breiter Markstrahlen (Fig. 173 m, 175 sm, tm, 177 ms) das Holz durchsetzt. Eine jede Holztracheïde grenzt in ihrem Längsverlaufe an einen oder auch an mehrere dieser Markstrahlen an. Die Markstrahlzellen sind radial gestreckt, stärkereich, werden von Interzellularen begleitet (Fig. 175 i) und dienen dazu, die in den Blättern gebildeten und im Baste abwärts geleiteten Assimilate in radialer Richtung dem Holz des Stammes und der Wurzeln zuzuführen und hier zu speichern, umgekehrt Wasser aus dem Holzkörper nach außen zu leiten. Diese Aufgaben können die Markstrahlen erfüllen, da sie, wie wir sahen, mit ihren Enden gleicherweise in den Bast und in das Holz eindringen (Fig. 173 B, 174, 177). Die Interzellularen münden in das Interzellularsystem der Rinde und sichern den lebenden Zellen im Holze den für ihre Lebensvorgänge notwendigen Gasaustausch mit der Atmosphäre.

Fig. 173. A Partie eines Querschnittes durch das Kiefernholz an einer Jahresgrenze. f Frühholz, s Spätholz, t Hoftüpfel, a eine sich nach außen verdoppelnde Tracheïdenreihe, h Harzgang, m Markstrahlen. Vergr. 240. B Querschnitt aus dem Stamme der Kiefer, den äußeren Hand des Holzkörpers, das Kambium und den angrenzenden Bast in sich fassend. s Spätholz, c Kambium, v Siebröhren, p Bastparenchym, k Kristallzellen, cv außer Funktion gesetzte Siebröhren, m Markstrahlen. Vergr. 240. Nach SCHENCK.
Bei bestimmten Gymnospermen, vor allem den Abietineen (etwa der Kiefer), sind einzelne Zellreihen der Markstrahlen des Holzkörpers, gewöhnlich die oben und unten randständigen, ohne lebenden Inhalt, tracheïdal ausgebildet, durch Hoftüpfel untereinander und mit den Tracheïden verbunden (Fig. 174 tm). Vor der Zerdrückung durch die turgeszenten lebenden Markstrahlzellen werden sie durch besondere Verdickungsleisten der Wand geschützt. Sie erleichtern den Wasseraustausch in radialer Richtung unter den Tracheïden, die nur in den radialen Wänden getüpfelt sind. Bei den meisten anderen Nadelhölzern dagegen, denen solche tracheïdalen Elemente in den Markstrahlen fehlen, sind auch tangentiale Hoftüpfel in den Tracheïden des Holzes vorhanden, wodurch eine radiale Bewegung des Wassers gefördert wird. Auch die parenchymatischen Markstrahlzellen des Holzes sind mit den Tracheïden, und zwar durch große einseitig behöfte Tüpfel verbunden (Fig. 175 et).

Fig. 174. Radialer Längsschnitt durch den Kiefernstamm, den Außenrand des Holzkörpers, das Kambium und den anschließenden Bast sowie einen Markstrahl in sich fassend. s Spättracheïden, t Hoftüpfel, c Kambium, v Siebröhren, vt Siebtüpfel, tm tracheïdale Markstrahlzellen, sm stärkeführende Markstrahlzellen im Holzkörper, sm′ im Bastkörper, em eiweißführende Markstrahlzellen. Vergr. 240. Nach SCHENCK.

Fig. 175. Tangentialer Längsschnitt durch das Spätholz der Kiefer. t Hoftüpfel, tm tracheïdale, sm stärkeführende Markstrahlzellen, et einseitig behöfte Tüpfel, i Interzellularen am Markstrahl. Vergr. 240. Nach SCHENCK.
Schon mit dem bloßen Auge nimmt man auf Stammholzquerschnitten, ebenso wie bei den meisten Dikotylenhölzern, Jahresringe wahr (Fig. 176, 177). Betrachtung dünner Querschnitte durch Gymnospermenholz bei stärkerer[S. 131] Vergrößerung (Fig. 173 A) belehrt darüber, daß in jedem dieser Ringe die inneren Elemente (f) jeder radialen Tracheïdenreihe weitlumig und dünnwandig, die äußeren aber (s) englumig und dickwandig sind. Der Übergang der weiten zu den engen ist im Jahresring ganz allmählich, der Übergang der englumigen zu den weitlumigen des nächst äußeren Jahresringes aber unvermittelt. Die Jahresringe[95] im Holze kommen durch die Periodizität der Kambiumtätigkeit zustande, die mit dem Wechsel der Jahreszeiten in Beziehung steht. Im Frühjahr, zur Zeit, wo die neuen Triebe sich entwickeln, werden Tracheïden mit größerem Hohlraum ausgebildet als in der Folgezeit. So entsteht ein weitlumigeres Frühholz (Frühlings- oder Weitholz, Fig. 173 Af, 177 f), das vor allem der Wasserzufuhr nach den Verbrauchsorten dient, und späterhin ein englumiges Spätholz (Sommer- oder Engholz, Fig. 173 As, 177 s), das vor allem die Festigkeit des Stammes erhöht. In der zweiten Augusthälfte hört die Holzbildung in unseren Breiten bei den Stämmen meist auf. Sie beginnt von neuem im nächsten[S. 132] Frühjahr mit weitlumigen Elementen. Demgemäß zeichnet sich zwischen dem letztjährigen Spätholze und dem nächstjährigen Frühholze eine scharfe Grenze (Fig. 173 g, 177 i), die eben dem bloßen Auge schon kenntlich ist und die zur Feststellung des Alters des betreffenden Pflanzenteils dienen kann. In dem Holzkörper der Wurzeln ist die Grenze der Jahresringe meist undeutlicher.

Je weiter spitzenwärts eine sekundär verdickte Sproßachse oder Wurzel quer durchschnitten wird, um so weniger Jahresringe findet man. Das folgt naturgemäß aus dem Scheitelwachstum dieser Organe. Je älter die Jahresringe, um so früher müssen sie sich ja scheitelwärts auskeilen. In ähnlicher Weise hören auch ältere Bastschichten nach dem Scheitel zu auf.

Unter Umständen vermag die Zahl der Ringe im Holz die Zahl der Altersjahre zu überschreiten, nämlich wenn Blattverlust durch Frost, Raupenfraß oder andere schädliche Einflüsse das Austreiben der für die nächstjährige Vegetationsperiode bestimmten Knospen veranlaßt und Neubelaubung eine Wiederholung der Frühholzbildung bedingt. Andererseits kann bei Holzgewächsen, die sonst die Jahresringbildung streng einhalten, ausnahmsweise die Zahl der nachweisbaren Jahresringe kleiner ausfallen, als das Alter des betreffenden Individuums verlangt, weil sich die Jahresgrenzen gelegentlich nicht deutlich markiert haben. So kann es auch kommen, daß eine Zählung in einem Stammradius etwas weniger Jahresringe als in einem anderen ergibt.

Fig. 176. Querschnitt durch einen im 4. Jahre stehenden Zweig der Linde (Tilia ulmifolia). pr Rinde, c Kambiumring, cr Bast, pm primäre Markstrahlen, pm′ äußeres, durch Dilatation erweitertes Ende eines primären Markstrahls, sm sekundärer Markstrahl, g Jahresgrenze, m Mark. Vergr. 6. Nach SCHENCK.

Fig. 177. Stück eines 4jährigen Stammteils der Kiefer (Pinus silvestris) im Winter geschnitten. q Querschnitt-, l radiale Längsschnitt-, t tangentiale Längsschnittansicht, f Frühholz, s Spätholz, m Mark, p primäre Gefäßteile, 1, 2, 3 und 4 die vier aufeinanderfolgenden Jahresringe des Holzkörpers, i Jahresgrenze, ms Markstrahlen in der Querschnittansicht des Holzkörpers, ms′ in der radialen Längsschnittansicht des Holzkörpers, ms″ innerhalb der Bastzone, ms‴ in der tangentialen Längsschnittansicht, c Kambiumring, b Bastzone, h Harzgänge, br die außerhalb der ersten Peridermlage befindliche, der Rinde entsprechende Borke. Vergr. 6. Nach SCHENCK.

Das Holz der Stämme und Wurzeln von Dikotylen läßt sich schon bei schwacher Vergrößerung leicht von einem Koniferenholze unterscheiden (Fig. 178–180). Abgesehen davon, daß in den Dikotylenhölzern außer Tracheïden und Parenchym stets noch Holzfasern und fast immer auch sehr weite Tracheen vorhanden sind, wachsen die verschiedenen Elemente, die Tracheen, Tracheïden, Holzfasern und Holzparenchymzellen, nicht übereinstimmend; infolgedessen können sie nicht ihre ursprüngliche radiale Anordnung und ihre ursprüngliche Form beibehalten. Außerdem werden im Frühholze der Jahres[S. 133]ringe hauptsächlich sehr weite Wasserbahnen, besonders Tracheen ausgebildet (Fig. 178, 179 m), während im Spätholze vor allem die englumigen Holzfasern (l) und die faserförmigen Tracheïden (t) vorherrschen.

Wir besitzen unter unseren dikotylen Holzgewächsen auch solche, bei denen die Jahresringe sich deshalb nicht sehr deutlich abheben, weil die verschiedenen Formelemente des Holzes annähernd gleichförmig über den Jahreszuwachs verteilt sind, so bei der Weide. Ja, es kann in diesem Falle die Abzählung der Jahresringe ganz unmöglich werden, wie beim wilden Wein. Bei den Holzgewächsen der feuchtwarmen Tropengebiete mit ununterbrochener Vegetationszeit können die Jahresringe ebenfalls fehlen. Bei vielen sind aber auch hier jahresringähnliche Zonen ausgebildet.

Nur die wasserleitenden Elemente des jüngsten Jahresringes stehen in direkter Verbindung mit den Blättern der betreffenden Vegetationsperiode. Da die Pflanze mit der Entfaltung der Blätter im Frühjahr plötzlich viel Wasser durch Transpiration verbraucht, so versteht man, daß im Frühholz eben zunächst für die nötigen Wasserbahnen gesorgt wird. Bei vielen Holzgewächsen wird die Laubmenge während des Sommers nicht weiter vermehrt, infolgedessen kann das Kambium im Spätholze vorwiegend Festigungsgewebe bilden.

Fig. 178. Teil eines Querschnittes durch das Holz von Tilia ulmifolia an einer Jahresgrenze. Vergr. 540. Nach STRASBURGER.

Fig. 179. Tangentialer Längsschnitt aus dem Holz von Tilia ulmifolia. Vergr. 160. Nach SCHENCK.

m Weites Tüpfelgefäß, t Tracheïden, l Holzfaser, p Holzparenchym, r Markstrahl.

Trotz allen Verschiedenheiten, die in der Struktur dikotyler Hölzer vorkommen, lassen sich für die Anordnung der verschiedenen Gewebearten doch bestimmte Regeln angeben, die stets befolgt werden. Die aus Tracheen oder Tracheïden bestehenden Gefäßstränge, reich verzweigt in radialer und tangentialer Richtung, bilden in der Längsrichtung des Holzes zusammenhängende Bahnen, die von den Wurzeln ohne Unterbrechung bis zu den dünnsten Zweigenden verlaufen. Nur so wird die ausreichende Wasserversorgung des Sproßsystems gewährleistet.

Holzparenchym (Fig. 178, 179 p) ist bei den meisten Dikotylenhölzern reichlich vorhanden, und zwar ebenfalls in Form längs verlaufender[S. 134] Stränge oder Schichten, die aber oben und unten im Holze früher oder später blind endigen. Das Holzparenchym bildet mit den Markstrahlen stets ein zusammenhängendes System lebender Zellen. Die Gefäße stehen immer mit diesen lebenden Holzparenchymzellen in Verbindung; bald werden sie rings von ihnen umhüllt, bald einseitig von ihnen begleitet (Fig. 178 p).

Das Holzparenchym umscheidet die Gefäße z. B. bei den Akazien u. a.; es bildet tangentiale Binden im Holze, an die die Gefäße sich einseitig anlehnen oder worin sie eingebettet sind, z. B. bei der Walnuß, der Edelkastanie und bei Eichen; manchmal ist es auf die Außenseiten der Jahresringe beschränkt.

Die Markstrahlen (Fig. 176 pm, sm: 178, 179 r) sind wie bei den Gymnospermen radial verlaufende niedere oder hohe, eine oder mehrere Zellschichten breite, unverzweigte oder meist verzweigte Bänder (Fig. 180 tm, sm), die durch das Kambium hindurch in den Bast eindringen (Fig. 176). Auch daran lehnen sich die Gefäßstränge hier und da an. Das Markstrahlparenchym verbindet, wie schon hervorgehoben, die Parenchymzellen des Bastes mit denen des Holzes, also alle lebenden Gewebe des Stammes und der Wurzel zu einer Einheit. In den Markstrahlen können auf diese Weise Assimilate, die im Baste abwärts strömen, radial in den Holzkörper und dort im Holzparenchym eine Strecke weit aufwärts oder abwärts geleitet werden. Diese Assimilate werden in den Markstrahlen und im Holzparenchym meist als Stärke oder auch als Fett aufgespeichert. Interzellularen, die den Markstrahl- und Holzparenchymsträngen folgen, dienen dem Gaswechsel der lebenden Elemente des Holzes.

Die Räume zwischen den Gefäß-, Holzparenchym-Strängen und Markstrahlen werden von Holzfasersträngen (Sklerenchym) ausgefüllt.

Die Höhe und Breite der Markstrahlen läßt sich leichter an tangentialen als an radialen Längsschnitten feststellen, weil man alsdann ihre Querschnitte vor sich hat. An solchen tangentialen Schnitten erscheinen die Markstrahlen spindelförmig (Fig. 179 r). Ihre Größe schwankt bei den meisten Hölzern nur innerhalb relativ enger Grenzen, doch bei gewissen anderen, so der Eiche und Rotbuche, sehr bedeutend. Die Eiche hat bis zu 1 mm breite und fast 1 dcm hohe große Markstrahlen, dazwischen zahlreiche sehr schmale niedrige. Bei der Pappel, der Weide, dem Buchsbaum sind alle Markstrahlen so klein, daß man sie auch mit der Lupe kaum unterscheiden kann. Besonders hoch und breit sind die primären, sich über die Länge eines ganzen Internodiums erstreckenden Markstrahlen bei vielen Lianen, so z. B. auch bei Aristolochia.

Fig. 180. Radialer Längsschnitt aus dem Holz von Tilia ulmifolia mit einem kleinen Markstrahl. g Gefäß, l Holzfasern, tm mit den Wasserbahnen durch Tüpfel verbundene, sm der Leitung der Assimilate vornehmlich dienende Markstrahlzellen. Vergr. 240. Nach SCHENCK.
Auch bei den Dikotylen, sehr ausgesprochen z. B. bei den Weiden, sind im Holzkörper meist Zellreihen des oberen und unteren Markstrahlrandes mit den Wasserbahnen durch einseitig behöfte Tüpfel verbunden. Ihre lebenden Zellen sind höher als die der mittleren Zellreihen; man hat sie daher auch als stehende Markstrahlzellen bezeichnet (Fig. 180 tm). Die mittleren Zellreihen sind in radialer Richtung stärker gestreckt, ohne besondere Verbindung mit den Wasserbahnen und vornehmlich auf Leitung und Speicherung der Assimilate eingerichtet: liegende Markstrahlzellen (Fig. 180 sm).

Die Markstrahl- und Holzparenchymzellen, die an die Gefäße angrenzen, nehmen Wasser aus den Wasserbahnen auf und geben es nach Bedarf an andere lebende Zellen ab; andererseits pressen sie im Frühjahr, zur Zeit der Knospenentfaltung, einen großen Teil der in ihnen gespeicherten Assimilate, vor allem[S. 135] Glykose und geringe Mengen von Eiweißstoffen, in die Gefäße ein, so daß diese Stoffe rasch nach den Verbrauchsorten gelangen. Demgemäß kann man während des Winters und zu Beginn des Frühjahrs Zucker und Eiweiß in den Gefäßen nachweisen. Diese Stoffe sind auch in dem Blutungssaft enthalten, den man im Frühjahr durch Bohrlöcher aus Birken, Ahornarten, Hainbuchen und anderen Bäumen gewinnen kann.

Maserbildung. Bei vielen technisch verwendeten Hölzern schätzt man vor allem außer der Farbe die Maserung. Sie beruht zunächst auf der Ausbildung der Jahresringe und der Markstrahlen, außerdem aber sehr oft, z. B. beim Nußbaumholz, auf einem welligen Verlauf der Formelemente des Holzes, der durch gedrängte Bildung von Seitenästen, Adventivknospen, Seitenwurzeln oder auch durch Wundreize u. dgl. veranlaßt worden ist.

C. Nachträgliche Veränderungen des Holzes. Bei den meisten Bäumen sterben die lebenden Elemente in den zentralen älteren Teilen des Holzkörpers ab, und die Wasserbahnen werden verstopft (Kernbildung), so daß nur die äußeren Holzschichten, die aus wenigen, und zwar den zuletzt entstandenen Jahresringen bestehen, noch lebende Zellen enthalten (Splint). Sie allein speichern noch Reservestoffe. Auch die Wasserleitung ist auf den Splint, ja vielfach sogar nur auf seine äußersten Schichten beschränkt; die peripheren Gefäße sind es ja, wie wir sahen, allein, die direkt mit den Blättern und mit den jüngsten Seitenwurzeln in Verbindung stehen. Der Kern dient nur noch der Festigung. Viel seltener als solche Kernhölzer sind Splinthölzer, deren gesamtes Holz Splint bleibt (Ahornarten, Birke, Linde). Kernhölzer fallen meist unmittelbar durch die hellere Farbe des Splintes auf; das dunklere Kernholz ist dichter, härter und fester als das Splintholz und durch Einlagerung verschiedener Stoffe gegen Zersetzung geschützt. Es gibt aber auch Kernhölzer, bei denen sich der Kern vom Splint durch die Farbe nicht unterscheidet und leicht zersetzt wird. Solche Stämme, wie die der Weiden, werden im Alter leicht hohl.

Fig. 181. Ein mit Thyllen erfülltes Gefäß, nebst den angrenzenden Elementen aus dem Kernholz der Robinie (Robinia Pseudacacia) im Querschnitt. Bei a und a ist der Zusammenhang der Thyllen mit ihren Ursprungszellen zu sehen. Vergr. 300. Nach SCHENCK.
Am schärfsten setzt sich der weißlichgelbe Splint vom Kernholz dort ab, wo letzteres eine dunklere Färbung zeigt, so bei unserer Eiche mit braunem Kern oder noch ausgesprochener beim Ebenholz (Diospyros), dessen Kern schwarz ist. Je dunkler das Kernholz, um so dauerhafter pflegt es zu sein. Vor dem Absterben bilden die lebenden Zellen des Holzes, die ihre Reservestoffe auflösen, meist verschiedene organische Stoffe, darunter besonders Gerbstoffe, die in die Membranen der umgebenden Elemente eindringen, ferner harz- und gummiartige Körper, die als Schutz- und Kerngummi ihre Hohlräume zum Teil verstopfen. Meist verleihen die Oxydationsprodukte der Gerbstoffe den toten Holzteilen die dunkle Färbung, und die Gerbstoffe schützen den toten Holzkörper vor Zersetzung. Die Gefäße in dem toten Holze werden teils durch Ansammlungen von Kerngummi, teils durch „Zellen“ verstopft, die die Gefäßlumina mehr oder weniger ausfüllen und als Thyllen[96] bezeichnet werden (Fig. 181); sie entstehen dadurch, daß lebende Holzparenchymzellen in die angrenzenden Gefäße durch die Tüpfel unter Dehnung der Schließhäute hineinwachsen. Thyllen können ferner in verwundeten Gefäßen entstehen; sie verschließen auch hier den Gefäßhohlraum. Auch anorganische Stoffe sind nicht selten in den Kernhölzern abgelagert, so bei Ulmus campestris und Fagus silvatica kohlensaurer[S. 136] Kalk, und zwar hauptsächlich in den Gefäßen; in den Gefäßen des Teakholzes (Tectona grandis) amorphe Kieselsäure. Die Kerne mancher Hölzer dienen Färbezwecken, z. B. liefert das Blau- oder Campecheholz (Haematoxylon campechianum L.) mit rotem Kern das Hämatoxylin.

4. Der Bast. A. Gewebearten und deren Funktionen. Auch den Bast (Fig. 173 B, 182) setzen meist drei Gewebearten zusammen: 1. längs verlaufende Stränge von Siebröhren (v), bei den Dikotylen mit Geleitzellen (Fig. 182 c), 2. bei vielen Gewächsen längs verlaufende Stränge meist toter Sklerenchymfasern, Bastfasern (Fig. 182 l) und 3. längs (p) und in den Markstrahlen (Fig. 173 Bm, 182 r) radial verlaufende Stränge von Parenchym mit Interzellularen: Bast- und Markstrahlparenchym. Dazu kommen oft noch Sekretzellen verschiedener Art (Kristallschläuche k, Milchröhren). Der Bast dient wie das Phloëm der Leitbündel vor allem dazu, die Assimilate zu leiten und vorübergehend zu speichern. Daneben trägt er zur Speicherung organischer Substanzen und oft zur Festigung bei. Die Siebröhren des Bastes haben bei vielen Pflanzen schräge Endwände (Fig. 182 v*); sie sind eiweißreich, dünnwandig, unverholzt und meist nur kurze Zeit tätig. Die Bastfasern sind sehr lang und englumig, stark verdickt, verholzt oder unverholzt; die Parenchymzellen sind in der Strangrichtung gestreckt, lebend, reich an Reservestoffen, dünnwandig und meist nicht verholzt.

Fig. 182. Durchschnitt durch den Bast der Linde (Tilia ulmifolia). v Siebröhren, bei v* eine Siebplatte getroffen, c Geleitzelle, p Bastparenchym, k Kristallzellen des Bastparenchyms, l Bastfasern, r Markstrahl. Vergr. 540. Nach STRASBURGER.
In einiger Entfernung vom Kambium erhalten die Siebplatten der Siebröhren Kallusbeläge. Noch weiter außen werden die Siebröhren und ihre Geleitzellen zerdrückt (Fig. 173 B cv). In seltenen Fällen, so beim Weinstock, sind sie mehr als 1 Jahr tätig; in diesem Falle wird ihr Kallusbelag für die Zeit ihrer Tätigkeit wieder entfernt. Bei solchen Koniferen, die eiweißhaltige Bastparenchymzellen im sekundären Baste besitzen, werden diese wie die angrenzenden Siebröhren zerdrückt. Die stärkehaltigen Bastparenchymzellen hingegen bleiben jahrelang am Leben; sie werden sogar zwischen den zerdrückten Siebröhren vergrößert.

B. Anordnung der Gewebearten im Baste. Die einzelnen Gewebearten des Bastes verlaufen ähnlich wie im Holze. Die Siebstränge bilden verzweigte Bahnen, in denen die Siebröhren ohne Unterbrechung von der Wurzel bis in die Laubblattkrone ausgebildet sind. Außerdem grenzen die Siebstränge hier und da ebenso wie die längs verlaufenden Bastparenchymstränge an die auch im Baste bandförmigen (Fig. 177 ms″) Markstrahlen an, die, wie wir schon sahen, die radialen Fortsetzungen der Holzmarkstrahlen sind. So können die Assimilate aus der Laubblattkrone einesteils innerhalb des Bastes nach den Wurzeln abströmen, andernteils in der schon geschilderten Weise aus dem[S. 137] Baste durch die Markstrahlen in die lebenden Zellen des Holzes gelangen, wo sie gespeichert werden.

Die Gewebearten des Bastes sind oft sehr regelmäßig zu tangentialen, nur von den Bastmarkstrahlen unterbrochenen Binden angeordnet (Fig. 182). Die Kambiumperiodizität spricht sich im Baste aber nicht aus; Jahresringe kommen also nicht vor. Das Kambium fährt auch nach Abschluß der Spätholzbildung im Sommer und Herbst, solange es die Witterungsverhältnisse gestatten, noch fort, nach außen Bast zu erzeugen.

So wechseln bei der Linde Bänder von (Fig. 182) Siebröhren (v) nebst Geleitzellen (c), stärkeführendem Bastparenchym (p), Kristallzellen (k), Bastfasern (l), flachen Bastparenchymzellen (p) und endlich wiederum Siebröhren miteinander ab. Der Unterschied im Aussehen der Baststränge bei verschiedenen Holzgewächsen wird vornehmlich durch die größere oder geringere Weite der Siebröhren, das Vorhandensein oder das Fehlen von Bastfasern, endlich durch die Art der Verteilung aller dieser Elemente bedingt.

Bei den Kiefern und verschiedenen anderen Abietineen unter den Gymnospermen sind eiweißreiche Zellreihen an den oberen und unteren Markstrahlrändern ausgebildet (em Fig. 174). Sie sind den Siebröhren dicht angeschmiegt, mit ihnen durch Siebtüpfel verbunden, werden zugleich mit den Siebröhren entleert und hierauf zusammengedrückt. Bei den Dikotylen sind die Markstrahlen im Baste einfacher gebaut als im Holzkörper. Die Aufgabe der Markstrahlzellen, die innerhalb des Bastes abwärts geleiteten Stoffe aufzunehmen, zeigt sich durch ihre Tüpfel an, die bei den Dikotylen nicht nur die Zellreihen des Markstrahls mit dem Bastparenchym, sondern auch mit den Geleitzellen der Siebröhren verbinden.

Folgen des sekundären Dickenwachstums für die Gewebe außerhalb des Kambiummantels. 1. Dilatation. Indem das Kambium nach innen immer mehr Holz, nach außen immer neuen Bast bildet, wächst der Stengel oder die Wurzel sekundär in die Dicke. Die Dauergewebe, die außerhalb des Kambiummantels gelegen sind: die Epidermis, die Rinde, die primären Phloëmstränge und der Bast, bleiben von diesem Dickenwachstum natürlich nicht unbeeinflußt; sie werden tangential gedehnt, zerrissen, zerdrückt, verschoben oder auch durch tangentiales Wachstum verbreitert (Dilatation). Zu solchem Dilatationswachstum sind natürlich vor allem die lebenden Parenchymzellen der Rinde, des Phloëms, des Bastes (namentlich des Markstrahlparenchyms), bei einigen Holzgewächsen sogar die Epidermiszellen befähigt[97]. Alle diese Zellen wachsen dabei sehr stark in tangentialer Richtung und werden meist durch radiale Wände geteilt. Im Baste ist dieses Wachstum häufig bei den Markstrahlen sehr auffällig: es kann in ihnen, z. B, bei der Linde, geradezu zur Ausbildung sekundärer Meristeme kommen, die durch Teilungen Parenchymzellreihen in tangentialer Richtung nach beiden Seiten abgeben, wodurch die Bastmarkstrahlen von Jahr zu Jahr nach außen mehr erweitert werden (Fig. 176 pm′). Die Siebröhren und ihre Geleitzellen aber, die nur kurze Zeit tätig sind und dann absterben, werden samt den Sekretzellen zerdrückt; auch die Sklerenchymfasern der Rinde und des Bastes beteiligen sich an der Dilatation meist nicht. War in der Rinde ein Hohlzylinder von Sklerenchymfasern vorhanden (Fig. 184 sc), so wird er in tangentialer Richtung zerrissen; in die Risse wachsen die in Dilatation begriffenen Parenchymzellen ein, füllen die Lücken aus und werden darin bei vielen Gewächsen zu dickwandigen Steinzellen (Fig. 184 s). Auch sonst wandeln sich während der Dilatation Parenchymzellen der Rinde und des Bastes einzeln, gruppen- oder schichtenweise nachträglich in Sklerenchymzellen um.

Ein jahrelanges Dilatationswachstum der Epidermis findet sich bei verschiedenen Rosen, Akazien, Ilex-, Ahornarten, den Misteln u. a. m. Solche Epidermen haben meist mächtig verdickte Außenwände. Sie vermögen diese Wände in dem Maße, wie sie an der Oberfläche Risse bekommen und zerstört werden, von innen durch neue Verdickungsschichten zu verstärken.

[S. 138]

2. Periderm. Gewöhnlich nimmt aber die Epidermis an der Dilatation nicht teil; sie wird passiv gedehnt und schließlich zersprengt. Schon lange vor dieser Zersprengung bildet sich ein neues Abschlußgewebe, der Kork aus, der die Epidermis später ersetzt und die Teile, die im Dickenwachstum begriffen sind, gegen Austrocknung schützt. Der Kork entsteht durch die Tätigkeit eines besonderen sekundären Meristems, das sich an der Peripherie der Organe bildet (Fig. 183).

Meist beginnt die Bildung dieses Korkkambiums (Phellogens) schon in der ersten Vegetationsperiode, bald nach oder gar schon vor Beginn des sekundären Zuwachses. Es kann aus der Epidermis selbst, und zwar durch tangentiale Teilungen ihrer Zellen hervorgehen. Meist aber bildet es sich aus der Rindenschicht, die auf die Oberhaut folgt, seltener aus tieferen Rindenschichten oder aus dem Perizykel. Das letzte ist meist bei den Wurzeln der Fall (Fig. 169 B k). Das Korkkambium erzeugt hauptsächlich nach außen Zellen, und zwar in radialen Reihen. Dieses Meristem mit sämtlichen Produkten seiner Tätigkeit nennt man Periderm. Die nach außen abgegebenen Zellen werden zu Korkzellen, die nach innen gebildeten zu chlorophyllreichen, unverkorkten Rindenzellen, die sich abrunden und die Rinde ergänzen. Hat die Bildung des Periderms begonnen, so bräunt sich die Stengeloberfläche.

Fig. 183. Querschnitt durch die äußeren Teile eines einjährigen Zweiges von Pirus communis im Herbst. Beginn der Peridermbildung. p Kork, pc Korkkambium, col Kollenchym. Die Korkzellen haben verdickte Außenwände. Vergr. 500. Nach SCHENCK.
Die Gesamtheit der Zellen, die aus dem Phellogen nach innen entstehen, bezeichnet man als Phelloderm.

Das Korkkambium ist in der Regel ein typisches Initialenkambium (vgl. S. 39), zumal wenn es Kork und Phelloderm liefert. Eine Initialschicht kann aber auch, z. B. bei fast allen Monokotylen, fehlen; alsdann teilen sich die Dauerzellen, aus denen das Korkkambium hervorgeht, in eine Anzahl Tochterzellen, die zu Korkzellen werden, worauf der gleiche Vorgang auf angrenzende Dauerzellen übergreift (Etagenkork).

Peridermbildung pflegt auch in solchen Pflanzen späterhin einzutreten, deren Epidermen zunächst jahrelang dilatiert werden. Sie geht nur den Mistelarten ab.

Echter Kork fehlt aber noch den Kryptogamen, selbst den Pteridophyten. Einen Ersatz hierfür bietet, wo ein entsprechender Schutz nötig ist, die Imprägnierung der Zellwände mit einem sehr widerstandsfähigen braunen Stoff oder die Anlagerung von Suberinlamellen in unverkorkte Zellen, also die Umwandlung von Zellschichten in Kutisgewebe[98].

Durch die Tätigkeit des Korkkambiums können dicke, außen rissige Korkkrusten gebildet werden, wie z. B. bei der Korkeiche, aus deren Kork die Flaschenkorke geschnitten werden. Die Schichtung, die sie zeigen, entspricht Jahresproduktionen. In anderen Fällen werden Korkhäute mit glatter Oberfläche von nur ganz wenigen Zellagen Dicke gebildet (Fig. 59, 183), deren äußerste Schichten dem Dickenwachstum des Stengels durch passive Dehnung lange Zeit folgen, schließlich zerreißen und abschilfern.

[S. 139]

Der Flaschenkork (Fig. 58) wird von breiten Lagen weicher, weiter Korkzellen gebildet, mit denen schmale Lagen, die Grenzen der Jahresproduktion bezeichnender, flacher Korkzellen abwechseln, wie man bei Korkstöpseln erkennen kann. Die mit lockerem Pulver angefüllten Poren, die den Flaschenkork in ganzer Dicke radial durchsetzen, sind seine Lentizellen (vgl. S. 50). Die erste Korkschicht der Korkeiche wird nach dem 15. Jahre bis auf das Korkkambium künstlich vom Stamm entfernt, worauf einige Zellagen tiefer sich ein neues Kambium bildet, das den technisch verwertbaren Flaschenkork liefert. Dieser wird alle 6–8 Jahre geschält. Da solche toten Korkkrusten der Dilatation nicht folgen können, so müssen sie außen allmählich rissig werden.

3. Borkebildung. Was vom Korkkambium nach außen zu liegen kommt, wird von weiterer Nahrungs- und Wasserzufuhr abgeschnitten und muß absterben. Alle auf solche Weise abgetrennten toten Gewebe werden mitsamt den Peridermschichten als Borke bezeichnet. So können je nach dem Entstehungsorte des Periderms die Epidermis oder kleinere oder größere Teile der Rinde zu Borke werden. Gewöhnlich stellt das erste Korkkambium in Stamm und Wurzel bald (aber z. B. nie bei der Buche) seine Tätigkeit ein. Es wird ein neues tiefer im Stamm angelegt, dessen Tätigkeit ebenfalls nach einiger Zeit erlischt. Hierauf entsteht weiter innen wieder ein neues, wie es Fig. 184 für die Steineiche zeigt. Schließlich sind es nicht mehr primäre, sondern sekundäre Gewebe, nämlich die lebenden Parenchyme der Bastzone, in denen das neue Korkkambium sich bildet, so daß an älteren Stämmen das lebende Gewebe außerhalb des Kambiummantels nur noch sekundären Ursprunges ist, und auch die Borke abgestorbene sekundäre Gewebe enthält. Die Gewebe, die durch die Korkschichten vom übrigen Gewebe des Körpers abgeschnitten worden sind, werden von Nährstoffen entleert und enthalten nur Nebenprodukte des Stoffwechsels. Die Borke vermag der weiteren Dickenzunahme des Stammes oder der Wurzel natürlich nicht mehr zu folgen, blättert mit der Zeit entweder außen ab oder zerreißt durch Längsrisse. Sie stellt einen noch viel vollkommeneren Schutzmantel als der Kork sowohl gegen Wasserverlust wie gegen Erwärmung dar.

Fig. 184. Querschnitt aus der Stammoberfläche der Steineiche (Quercus sessiliflora). 1, 2 und 3 nacheinander erzeugte Korkschichten. pr Durch nachträgliche Dilatation veränderte Rinde, pc Grenze des Perizykels, sc Sklerenchymfasern aus einem zersprengten Sklerenchymfaserringe des Perizykels, s Steinzellen, nach der Zersprengung dieses Ringes aus Parenchym entstanden, s′ Steinzellen im sekundären Zuwachs, cr Bastfasern von Kristallzellen begleitet, k Zellen mit Kristalldrusen. Alles Gewebe außerhalb der innersten Korkschicht abgestorben und gebräunt, in Borke verwandelt. Vergr. 255. Nach SCHENCK.
Durch die Borkebildung werden an älteren sekundär verdickten Pflanzenteilen die äußeren, jeweils ältesten Teile des Bastes abgestoßen. Die Folge davon ist, daß der Bastmantel immer nur schmal bleibt. Festigungselemente[S. 140] können also nur dann zu dauernden Bestandteilen der Stämme werden, wenn sie innerhalb des Kambiums, d. h. im Holze entstehen.

Umfassen die Korkschichten und die Korkkambien, aus denen sie entstanden sind, nur begrenzte Teile der Stammoberfläche, so schneiden sie schuppenförmige Gewebestücke aus ihr heraus. Dabei setzen jüngere Korklagen mit ihren Rändern an ältere an. In solcher Weise erzeugte Borke heißt Schuppenborke, so bei der Platane, der Eiche (Fig. 184), unseren Nadelhölzern. Bilden die Korklagen dagegen geschlossene Mäntel, so werden stammumfassende Rindenmassen als Ringelborke entfernt, so beim Weinstock, Kirschbaum, Geißblatt und bei der Waldrebe.

Bei solchen Stämmen, bei denen die Borke abblättert, geschieht das nicht in rein mechanischer Weise, sondern durch Vermittlung von Trennungsschichten aus besonders dünnwandigen Kork- oder Phelloidzellen (vgl. S. 50), die zwischen die übrigen, oft stark verdickten Kork- oder Phelloidschichten des Periderms eingeschaltet sind. Diese Trennungsschichten werden durch hygroskopische Spannungen der Borke durchrissen. Schwer sich ablösende Borke wird während der Dickenzunahme des Stammes nur rissig (rissiges Aussehen der Rinde bei den meisten alten Bäumen).

Die braune oder rote Färbung, die die Borken meist zeigen, wird durch ähnliche Derivate von Gerbstoffen wie die Färbung vieler Kernhölzer veranlaßt. Diese antiseptisch wirksamen Stoffe bedingen die große Widerstandsfähigkeit der Borke. Die weiße Färbung der Birkenborke rührt von Betulin (Birkenharz) her, das als feinkörniger Inhalt die Korkzellen füllt.

Wundenheilung[99]. Im einfachsten Falle sterben die verletzten Zellen am Körper der Landpflanzen ab, bräunen sich und vertrocknen, während die Wände der darunter liegenden, unverletzt gebliebenen Zellen mit Schutzstoffen imprägniert, unter Umständen auch mit Suberinlamellen versehen, also zu Kutisgewebe werden. Bei größerer Ausdehnung der Wunde bilden aber die Phanerogamen unter diesen Zellschichten ein Korkkambium aus, das Wundkork erzeugt. So werden auch die Blattnarben, die beim Laubfall entstehen (S. 104), zunächst durch Verholzung und Verkorkung der freigelegten Zellen, hierauf meist noch durch Ausbildung einer Korkschicht abgeschlossen, die an die des Stammteils ansetzt. Die Enden der Gefäße an der Blattnarbe füllen sich entweder mit sog. Schutzgummi oder mit Thyllen oder mit beidem; die Enden der Siebröhren werden zerdrückt und verholzen.

Wenn eine Wunde ein noch junges Gewebe bloßlegt, kommt es gewöhnlich zur Bildung eines Kallus. D. h. alle an die Wunde grenzenden lebenden Zellen wuchern aus ihr hervor, teilen sich und schließen zusammen. Diese Kalluswucherung kann an ihrer Oberfläche unmittelbar verkorken und so den nötigen Schutz gewähren. In den meisten Fällen bildet sich aber in der Peripherie des Kallus ein Korkkambium aus, das Kork erzeugt. Ausgedehnte Wunden an älteren Stammteilen der Gymnospermen und Dikotylen, die bis in den Holzkörper reichen, werden überwallt: Das an die Wundränder grenzende Stammkambium wächst wulstartig zu einem Kallus hervor; der Wulst schließt sich durch den Kork nach außen ab, während in seinem Innern eine Kambiumschicht differenziert wird, die mit dem Stammkambium in Verbindung tritt. Dieses Kambium bildet, wie das angrenzende, nach innen Holz, nach außen Bast. So vergrößern sich die Überwallungswülste und decken allmählich die Wundfläche. An der bloßgelegten Holzfläche sind, falls sie noch aus Splint bestand, die toten Elemente durch Wundgummi verstopft, den die lebenden Zellen des Holzes erzeugen; die ganze Stelle ist gebräunt. Gelingt es den Überwallungswülsten, sich über der Wundfläche mit den Rändern zu erreichen, so verschmelzen schließlich ihre Kambien zu einer einheitlichen Meristemschicht, die weiter eine zusammenhängende Holzschicht nach innen und eine Bastschicht nach außen bildet. Das deckende Holz verwächst nicht mit dem bei der Verwundung bloßgelegten. Letzteres ist ja gebräunt und abgestorben. Daher lassen sich in Stämme eingeschnittene Zeichen, die bis auf den Holzkörper reichen, nach ihrer Überwallung wiederfinden. Durch Überwallung vom Kambiummantel aus werden auch Aststümpfe mehr oder weniger vollständig abgeschlossen. Das über den Wunden erzeugte Holz ist in seinem Bau von normalem Holz zunächst verschieden, wird daher als Wundholz bezeichnet. Es besteht aus fast isodiametrischen Zellen, auf die erst allmählich gestrecktere Formen folgen. Beim Kirschbaum erzeugt das Kambium infolge von Verwundungen statt normaler Holzelemente Nester dünnwandiger Parenchymzellen, die in Gummibildung eintreten (S. 33).

[S. 141]

2. Anpassungen des Kormus an die Lebensweise und an die Umwelt[100].
Der äußere und innere Bau des Kormus steht in engen Beziehungen zu seiner Lebensweise und diese wieder zur Außenwelt. Wir finden, daß fast jede Pflanze durch ihren äußeren und inneren Bau an ihre Lebensweise und an ihre gewohnte Umwelt, an ihren Standort, angepaßt ist. Darauf vor allem beruhen die gemeinsamen Züge, die einheitliche Physiognomie, der Gewächse eines Standortes und darauf auch die Unterschiede in der Physiognomie der Vegetation zwischen solchen Pflanzenstandorten auf der Erde, wo die Außenfaktoren, z. B. das Klima, sehr verschieden sind. Infolgedessen sind die Vegetationsorgane nicht bei allen Kormophyten typisch ausgebildet. Oft sehen sie ganz anders aus, da die Grundformen in verschiedenster Weise abgeändert, metamorphosiert sein können. Erst eine sehr genaue entwicklungsgeschichtliche oder anatomische Untersuchung ermöglicht es, bei vielen Kormophyten nachzuweisen, daß auch ihre ganz abweichend gestalteten Organe immer wieder nur Metamorphosen der drei Grundorgane des Kormus: Wurzel, Stengel, Blatt sind, und festzustellen, welcher Grundform sie homolog sind. Der äußere Bau und die Funktionen der fertig ausgebildeten Organe können nämlich sehr leicht irreführen, weil nicht selten ein Grundorgan, z. B. eine Sproßachse, Bau und Funktionen eines anderen, z. B. eines Blattes, übernommen hat, oder weil verschiedene Grundorgane zu Werkzeugen von gleichem Bau und gleicher Funktion umgebildet worden sind, also bloß analog, aber nicht homolog sind. Bei Berücksichtigung aller morphologischen Eigenschaften eines abgeänderten Organes wird man aber in der Regel keinen Zweifel über seine Abkunft hegen.

Die Form einer Pflanze und die Ausbildung ihrer Teile ist in allererster Linie an die Ernährungsweise des Gewächses angepaßt. Infolgedessen sind wichtige und sehr auffällige morphologische Unterschiede zwischen solchen Kormophyten vorhanden, die mit anorganischen Nährstoffen auskommen (autotrophe K.) und solchen, die organische Nahrung nötig haben (heterotrophe K.).

A. Autotrophe Kormophyten.

An Autotrophie sind die grünen Pflanzen in ihrem Bau angepaßt. Soweit sie Kormophyten sind, wurden ihre typischen Baueigentümlichkeiten im letzten Abschnitte besprochen. Die grünen Kormophyten können aber untereinander wieder sehr verschieden gebaut sein; denn sie sind in ihrem Bau auch noch an ihre Umwelt angepaßt, in der sie leben, und diese Umwelt kann recht mannigfaltig sein.

Von allen den vielen Faktoren, die in der Umwelt wechseln können, hat den bei weitem größten Einfluß auf die Gestaltung der grünen Pflanzen das Wasser, nächstdem das Licht. Das ist leicht begreiflich. Nur wenn genügend Wasser verfügbar ist, vermag ja, wie jedermann weiß, die Pflanze ihr Leben zu fristen. Und nur wenn sie genügend Licht aufnehmen kann, kann sie autotroph sein, organische Substanz aus anorganischer aufbauen.

a) Anpassungen an den Feuchtigkeitsgehalt der Umwelt.

1. Wasserpflanzen, Hydrophyten[101]. Zu besonderen Baueigentümlichkeiten führte das Leben im Wasser, wo dauernd mit der ganzen Oberfläche der Pflanze, also auch mit Stamm und Blättern, Wasser und Nährsalze und nur aus dem Wasser die nötigen Gase (Kohlensäure und Sauerstoff) aufgenommen werden können. Zum Verständnis der Lebensbedingungen im Wasser ist es unerläßlich, den Gehalt des Wassers an diesen Gasen zu kennen[S. 142] und mit dem der Luft zu vergleichen. Das Liter Luft enthält etwa 210 ccm Sauerstoff und 0,3 ccm Kohlensäure. Im Liter Wasser sind dagegen z. B. bei 20° (im Falle der Sättigung) nur etwa 6 ccm Sauerstoff, dagegen wiederum etwa 0,3 ccm Kohlensäure vorhanden. Den Wasserorganismen steht also zwar ungefähr ebensoviel Kohlensäure (oder meist sogar noch etwas mehr) wie in der Luft, aber sehr viel weniger Sauerstoff zur Verfügung, wenigstens im unbewegten Wasser, da der Sauerstoff im Wasser sehr langsam diffundiert.

Nicht selten sind die Wurzeln überhaupt nicht mehr (Utricularia, Ceratophyllum, Wolffia) oder nur schwach ausgebildet. Der Sproß aber ist hier anatomisch insofern der Wurzel ähnlich geworden, als er auf seinen stets sehr dünnen Epidermisaußenwänden nur eine sehr zarte Kutikula ausbildet, die dem Wasser- und Salzeintritt, wenigstens an den Blättern[102], kaum Schwierigkeiten entgegenstellt. Zur Langsamkeit der Gasdiffusion im Wasser und zur Armut des Wassers an Salzen steht aber wohl in Beziehung eine Oberflächenvergrößerung der meist sehr dünnen, submersen Blätter, häufig durch feine Zerteilung der Blattflächen (Batrachium Fig. 139, Utricularia, Myriophyllum, Ceratophyllum), während die Schwimm- und Luftblätter meist typisch ausgebildet sind (Heterophyllie, vgl. S. 102). Anatomisch sind die submersen Blätter von diesen Blättern dadurch verschieden, daß ihrer chlorophyllhaltigen Epidermis meist die Spaltöffnungen und in der Regel auch die Haare fehlen, ferner dadurch, daß ihr an großen Interzellularen reiches Mesophyll aus gleichartigem Parenchym besteht, also nicht in Palisaden- und Schwammparenchym differenziert ist; infolgedessen zeigen die Blätter im inneren Bau bilaterale Symmetrie (Fig. 185). Mit dem Mangel der Transpiration und eines lebhaften Wassertransportes bei untergetauchten Wasserpflanzen geht Hand in Hand die schwache Ausbildung der wasserleitenden Elemente in den Stengeln und Blättern, ferner der Mangel eines sekundären Dickenwachstums. Der Auftrieb im Wasser macht auch das Festigungsgewebe unnötig; höchstens in rasch strömendem Wasser wird für die nötige Zugfestigkeit durch zentrale Lagerung der Leitbündel gesorgt.

Eine schwache Wasserdurchströmung der Pflanze, verbunden mit Wasserausscheidung durch die Apikalöffnungen der Blätter (vgl. S. 99), läßt sich aber selbst bei vielen submersen Wasserpflanzen nachweisen.

Auffallend bei fast allen Wasser- und auch Sumpfpflanzen ist die mächtige Entwicklung der Interzellularen. Sie sind ganz besonders weit, bilden ein System von oft sehr regelmäßig geformten Luftkammern und Luftkanälen und werden durch parenchymatische Zellschichten getrennt, die meist nur eine Zellage stark sind; so in den Stengeln von Papyrus, Potamogeton u. a., den Blattstielen der Nymphaeaceen, den Wurzeln der Onagracee Jussieua. Man hat solche Gewebe als Luftgewebe oder Aërenchym bezeichnet; denn solche weiten Luftkanäle sind Luftspeicher, zugleich ermöglichen sie eine sehr rege Gasdiffusion im Innern des Pflanzenkörpers: den schnellen Transport von Sauerstoff aus den assimilierenden grünen Teilen in die nicht grünen; sie begünstigen also die Atmung.

Fig. 185. Blattquerschnitt von Zanichellia palustris. Vergr. 146. Nach SCHENCK.
[S. 143]

Bei manchen Sumpfpflanzen, die mit ihren unterirdischen Organen in sehr sauerstoffarmem Sumpfboden leben, so z. B. bei gewissen Palmen und bei Mangrovepflanzen der tropischen Küstensümpfe, von denen einige durch ein System sproßbürtiger, stelzenförmiger Luftwurzeln (Stelzwurzeln) sich im Schlamme verankern (Fig. 187)[100], werden besondere Organe zur Zuführung von Sauerstoff ausgebildet: aus dem Sumpfboden aufsteigende Atemwurzeln (Pneumatophoren Fig. 186), die aus der Luft durch Lentizellen-ähnliche Öffnungen (Pneumathoden) Sauerstoff aufnehmen und durch Luftgewebe zu den unterirdischen Teilen gelangen lassen.

Fig. 186. Atemwurzel von Sonneratia alba. Verkleinerung einer Abbildung in den „Vegetationsbildern“; nach JOH. SCHMIDT.

Fig. 187. Stelzwurzeln bei Rhizophora mucronata. Malayischer Archipel. Nach G. KARSTEN.

2. Die Landpflanzen. Sie nehmen meist nur aus dem Boden Wasser und Nährsalze, aus der Luft Kohlensäure, dagegen Sauerstoff sowohl aus dem Boden wie aus der Luft auf und geben mit ihren Luftsprossen Wasser in Dampfform (durch Transpiration) an den Luftraum ab.

Eine Ausnahme bilden nur einige Gewächse sehr feuchter Örtlichkeiten, die mit ihrer ganzen Oberfläche Wasser absorbieren; besonders die Hymenophyllaceen der tropischen Regenwälder. Manche von ihnen bilden keine Wurzeln aus, besitzen aber an den Wasser aufnehmenden Blättern oder Stengeln oder beiden ein System von verschieden gestalteten Haaren, das eine gewaltige Oberflächenvergrößerung bedingt.

Die Landpflanzen haben verschiedenen Bau, je nachdem es Pflanzen immerfeuchter Standorte, Pflanzen trockener Standorte und Klimate oder Pflanzen wechselfeuchter Klimate sind.

a) Anpassungen an immerfeuchte Standorte, Hygrophyten[103]. Landpflanzen, die dauernd in sehr feuchter Atmosphäre leben (Hygrophyten, Hygrophile), z. B. viele tropische Schattenpflanzen, bedürfen wie die Wasserpflanzen keine Einrichtungen, die die Transpiration herabsetzen, ja haben sogar, scheint es, solche, die die Wasserabgabe der Luftsprosse fördern (Hygromorphie). Nur durch solche Einrichtungen dürfte die genügend starke Wasserbewegung aus den Erdwurzeln in die oberirdischen Organe gesichert sein, die zur Beschaffung und zur Fortbewegung der nötigen Nährsalzmenge erforderlich ist. Im äußeren und inneren Bau gleichen viele Hygrophyten in mancher Hinsicht den Wasserpflanzen, und zwar um so mehr, an je feuchteren Standorten sie gedeihen.

[S. 144]

Wir finden bei den Hygrophyten mannigfaltige Einrichtungen, die der Transpiration günstig sind: Ausbildung großer und dünner Blattflächen, schwache Ausbildung der Kutikula, Verlegung der Stomata auf exponierte Vorsprünge, wo sie über die Epidermis emporgehoben sind, schließlich Baueigentümlichkeiten des Blattes, die es, wie STAHL zeigte, nach Regengüssen möglichst schnell wieder trocken werden lassen. Eine vorgezogene Spitze, mit der die Spreiten oft abschließen, die Träufelspitze, oder die Unbenetzbarkeit des Blattes durch Wachsüberzüge erleichtern das Abfließen des Wassers; eine Samtoberfläche, durch Papillen bedingt, breitet Wassertropfen kapillar zu einer äußerst dünnen, schnell verdunstenden Schicht aus. Ferner hebt vielleicht, nach STAHL, die Ausbildung Lichtstrahlen absorbierender Farbstoffe, die Buntblättrigkeit, durch Wärmeabsorption die Temperatur des Blattes über die Umgebung, so daß die Transpiration am Tage auch noch in dampfgesättigter Luft unterhalten werden kann. In der Abgabe tropfbar flüssigen Wassers, (der sog. Guttation) aus wasserausscheidenden Organen der Blätter, den Hydathoden, besitzen manche dieser Pflanzen vielleicht ein Mittel, auch nach völliger Hemmung der Transpiration noch genügend Wasser abzugeben. Diese Organe sind entweder Drüsenhaare oder -flächen, die Wasser sezernieren, oder Wasserspalten, aus denen Wasser von den Leitbündeln her ausgepreßt wird (vgl. Fig. 134).

b) Anpassungen an physiologisch trockene Standorte oder an trockene Klimate, Xerophyten[100], [104]. Dagegen bedürfen die Landpflanzen um so mehr Einrichtungen, die auf Hemmung der Wasserabgabe berechnet sind, in je trockenerer Luft ihre Sprosse wachsen und je schwerer zugleich ein hinreichend schneller und großer Wassernachschub möglich ist. Denn die Einschränkung der Transpiration, die unter ungünstigen Verhältnissen auch in allen anderen Klimaten durch Verschluß der Stomata bewirkt wird, würde für Pflanzen besonders trockener Klimate und Standorte nicht ausreichen. Austrocknungsfähig aber (vgl. S. 189), wie Flechten und Moose, sind nur wenige Kormophyten; die meisten werden schon durch starkes Welken getötet.

Pflanzen mit solchen Einrichtungen zur Hemmung der Wasserabgabe nennt man Xerophyten (Xerophile). Man erkennt sie schon an ihrem Habitus. Die Summe von morphologischen Eigenschaften, die solche Einrichtungen bilden, fassen wir in dem Worte „Xerophytenbau“ (Xeromorphie) zusammen. Besonders extreme Xerophyten sind natürlich viele Wüstenpflanzen, die Gewächse trockener Felsen und viele Epiphyten (vgl. S. 156).

Sehr auffallend ist aber, daß mehr oder weniger ausgeprägter Xerophytenbau auch bei Pflanzen von ganz anderer Lebensweise vorkommt, wo er gar nicht oder wenigstens nicht auf den ersten Blick verständlich erscheint, so bei den Pflanzen der Hochgebirge und des hohen Nordens, bei vielen Sumpfpflanzen, bei den Pflanzen des Meeresstrandes, namentlich den Salzpflanzen (Halophyten) (Fig. 192), selbst solchen, die, wie die Mangrovegewächse tropischer Küsten, direkt im Wasser wachsen. Wenn auch hier noch manche Frage ungelöst ist, wird man doch annehmen dürfen, daß die Mehrzahl dieser Gewächse wenigstens zeitweise in Gefahr ist, mehr Wasser durch Transpiration abzugeben, als sie aus dem Boden aufzunehmen oder in die Blätter zu schaffen vermögen. Wenn sie auch in verhältnismäßig feuchten Böden leben, so scheinen diese für sie doch, zum mindesten vorübergehend, mehr oder weniger physiologisch trocken zu sein, d. h. die Wasseraufnahme zu erschweren.

Es gibt anatomische und morphologische Einrichtungen, die die Transpiration herabsetzen. Ein Teil von ihnen mag zugleich als Schutzmittel gegen zu starke Lichtbestrahlung oder gegen zu hohe Erwärmung anzusehen sein.

Anatomische Einrichtungen, die die Transpiration einschränken, sind: Verstärkung der Kutikula und der kutinisierten Epidermisaußenwände; verschleimte Epidermiszellen; Ausbildung von Wachs-, Harz- oder Kalküberzügen, bei Stämmen oder Wurzeln auch von Korkschichten; Verringerung der Spaltöffnungszahl; Verengung der Spaltöffnung oder ihre Verstopfung durch Harz- oder Wachsmassen; Einsenkung der Spaltöffnungsapparate einzeln[S. 145] in Vertiefungen der Epidermis (Fig. 188) oder in größerer Zahl in besondere krugförmige Vertiefungen der Blattunterseite, die nur durch enge Kanäle nach außen münden, wie beim Oleander, ferner ihre Überwölbung durch Nachbarzellen. Endlich werden als Schirm gegen die Sonnenstrahlen Filzhaare, Stern- und Schuppenhaare ausgebildet, die sich frühzeitig mit Luft füllen und dadurch der Pflanze eine weiße oder graue Farbe verleihen (Edelweiß, Proteaceen Australiens, Ölbaum). Oder die immergrünen Blätter sind klein, dicklich, lederartig und verhältnismäßig saftarm (Hartlaubgewächse, Sklerophyllen des Mediterrangebietes, z. B. Ölbaum, Myrte). Bezeichnend für die Blätter ausgesprochener Sklerophyllen (Fig. 191) ist die Kleinheit der Interzellularen im Mesophyll, das meist sehr kleinzellig ist und vielfach kein Schwammparenchym enthält, sondern oft nur aus Palisadenzellen besteht oder doch zum mindesten ober- und unterseits mehrere typische Schichten solcher Zellen aufweist, so daß die Blätter vieler Sklerophyllen bilateral symmetrischen Bau besitzen. Einige Xerophyten verzichten aber auf jeden Transpirationsschutz durch anatomische Charaktere, weil sie durch ihren hochkonzentrierten Zellsaft zu einer Wasseraufnahme auch aus verhältnismäßig trockenem Boden befähigt sind (S. 195).

Meist verbinden sich diese Einrichtungen mit morphologischen Besonderheiten des äußeren Baues, die ebenfalls die Transpiration herabsetzen.

Viele kleinblättrige Xerophyten zeichnen sich durch Polsterwuchs aus (Polsterpflanzen, z. B. viele Alpenpflanzen, Fig. 189), wodurch schon die Transpiration eingeschränkt und zugleich ein Schutz gegen zu starke Bestrahlung gewährt wird.

Ein sehr wirksamer Transpirations- und Lichtschutz wird durch Einstellung der Blattflächen in die Vertikalebene erzielt, vor allem bei neuholländischen Akazien und Myrtaceen; bei den Akazien verbunden mit Reduktion der eigentlichen Blattflächen und blattförmiger Ausbildung der Blattstiele (Phyllodien, Fig. 140 und Fig. 190). Auch unter den einheimischen Pflanzen findet sich ähnliche Einstellung der Blätter: so z. B. bei der als Kompaßpflanze bekannten Lactuca scariola, die sämtliche Blätter vertikal, und zwar in eine Nord-Süd-Ebene stellt. An solchen Blättern gleiten bei höchstem Stand der Sonne die Lichtstrahlen mehr oder weniger seitlich vorbei. Dadurch wird vielleicht eine übermäßige Erwärmung und Transpiration verhindert.

Fig. 188. Querschnitt durch die Epidermis von Aloë nigricans. i Innere, nicht kutinisierte Verdickungsschicht. Vergr. 240. Nach STRASBURGER.

Fig. 189. Raoulia mamillaris (Composite) von Neuseeland. Polsterförmiger Zusammenschluß der Einzelpflanzen. Aus SCHIMPER, Pflanzengeographie.

[S. 146]

Sehr häufig werden die Blattspreiten reduziert. Bei den Steppengräsern geschieht dies durch Einrollung ihrer freien Oberfläche (Fig. 192); bei Ericaceen, Genisteen, Cupressaceen und gewissen habituell ihnen ähnlichen Veronica-Arten Neuseelands (vgl. auch Fig. 193) durch Verkleinerung der Spreiten; bei Kakteen, baumartigen Euphorbia-Arten, einigen Asclepiadaceen durch völliges Schwinden der Spreiten. Mit der Verkleinerung der Blätter muß aber außer der Transpiration auch die Assimilation des Kohlenstoffs abnehmen; so sehen wir zur Kompensation des Verlustes Chlorophyllparenchym in den Stengeln dieser Pflanzen auftreten. In diesem Falle sind die Sproßachsen grün gefärbt; so z. B. bei Sarothamnus scoparius, der an seinen langen, rutenförmigen Zweigen nur vereinzelte hinfällige, lanzettliche Blättchen entwickelt (Rutengewächse, Sklerokaulen).

Fig. 190. Acacia marginata mit senkrecht gestellten Phyllodien. Aus SCHIMPER, Pflanzengeographie.

Fig. 191. Querschnitt des Blattes der Capparidacee Capparis spinosa var. aegyptiaca. Vergr. 40. SCHIMPER nach VOLKENS.

Fig. 192. Blattquerschnitte des Grases Stipa capillata. Oben ein Blatt in geschlossenem Zustande, unten die Hälfte eines offenen Blattes. U Spaltöffnungslose Unterseite. O Oberseite mit Spaltöffnungen (S). C Chlorophyllhaltiges Assimilationsgewebe. 30fach vergr. Nach KERNER V. MARILAUN.

Oft geht Hand in Hand mit einer Reduktion der Blätter eine Abflachung und blattähnliche Ausbildung der grünen Sproßachsen,[S. 147] die alsdann weit vollkommener als die rutenförmigen die Assimilationsfunktionen des Blattes übernehmen können (Fig. 194, 195), aber natürlich zugleich auch wieder stärker transpirieren. Solche blattartige Sprosse werden als Flachsprosse, Kladodien oder Phyllokladien bezeichnet. GOEBEL schlägt vor, jene Flachsprosse, die begrenzt wachsen und dadurch besonders blattähnlich werden, Phyllokladien, andere verbreiterte Sproßachsen Kladodien zu nennen. Ein lehrreiches Beispiel für Phyllokladien ist Ruscus aculeatus, ein kleiner xerophytischer Strauch des Mittelmeergebietes, der an seinen Zweigen (Fig. 194) in den Achseln schuppenförmiger Blätter (f) breite, in eine scharfe Spitze auslaufende Phyllokladien (cl) trägt, die durchaus den Eindruck von Blättern machen. Ihrer Oberfläche entspringen manchmal in der Mittellinie, annähernd in ihrer halben Länge, aus der Achsel eines schuppenförmigen Blattes eine bis zwei Blüten. Diese Phyllokladien sind ein sehr schönes Beispiel für Analogie von Organen: sie sehen aus und funktionieren wie Blätter, sind aber Sproßachsen, wie ihre geschilderten morphologischen Eigenschaften lehren. Eine blattartige Abflachung des gesamten massig entwickelten Stammes, also Kladodienbildung, mit Verschmälerung an den Verzweigungsstellen, zeigen uns die bekannten Opuntien (Fig. 195).

Fig. 193. Salicornia herbacea (Chenopodiacee), eine ausgesprochene Salzpflanze. Aus SCHIMPER, Pflanzengeographie.

Fig. 194. Zweig der mediterranen Liliacee Ruscus aculeatus. f Blatt, cl Phyllokladium, bl Blüte. Nat. Größe. Nach SCHENCK.

Fig. 195. Opuntia monacantha Haw. Kladodien mit Blattdornen, Blüte und Früchten. Nach SCHUMANN. Etwa fünfmal verkleinert.

Besonderes Interesse bieten schließlich einige Xerophyten, bei denen nicht allein die Blätter, sondern auch die Sproßachsen ganz schwinden. Dann übernehmen die abgeplatteten, grünen Wurzeln, aus denen die Vegetationsorgane allein bestehen, die Funktionen der Blätter (so bei der epiphytischen Orchidee Taeniophyllum, Fig. 196).

[S. 148]

Fig. 196. Taeniophyllum Zollingeri. Xerophytische Orchidee ohne Blätter und ohne Sproßachsen, mit grünen, abgeflachten Wurzeln. Nat. Gr. Aus SCHIMPER, Pflanzengeographie; nach WIESNER.
Mit dem großen Reichtum an Sklerenchym, der für die Sprosse vieler Xerophyten bezeichnend ist und ihre nötige Festigkeit auch im Falle schwächeren oder stärkeren Welkens sicherstellt, steht oft in Zusammenhang die Ausbildung von Dornen, die aber auch bei einigen nicht xerophytisch gebauten Pflanzen unserer Klimate vorkommen. Das sind sehr spitze, verholzte und infolgedessen starre, verzweigte oder unverzweigte, pfriemförmige Gebilde, die durch Umwandlung von Blättern oder Blatteilen (Blattdornen) oder von Sprossen (Sproßdornen) oder in sehr seltenen Fällen von Wurzeln (Wurzeldornen) entstanden sind. Beim Sauerdorn (Berberis vulgaris) wird das ganze Blatt an den Hauptsprossen in einen meist dreistrahligen Dorn umgestaltet; die Seitentriebe, die entwickelte Laubblätter tragen, stehen in den Achseln dieser Dornen. Auch bei den Kakteen (Fig. 195) gehen die Dornen aus Blattanlagen hervor. Bei der Robinie (Fig. 197) und bei manchen sukkulenten Euphorbien entwickeln sich die beiden Nebenblätter zu Dornen. Sproßdornen treten bei Prunus spinosa, Crataegus oxyacantha und den in unseren Gärten häufig kultivierten Gleditschien (Fig. 198) auf. Bei Colletia cruciata, einer strauchartigen amerikanischen Rhamnacee, die an trockenen, sonnigen Standorten wächst, sind alle Sproßachsen domartig ausgebildet, zugleich etwas abgeflacht und grün; sie ersetzen die bald abfallenden, kleinen Blätter. Wurzeldornen kommen bei einigen Palmen am Stamme vor (z. B. Acanthorrhiza) und bei Myrmecodia unter den Dikotylen. Der Dornsproß ist vor allem vielen Xerophyten der Wüsten und Steppen eigentümlich.

Fig. 197. Stammstück von Robinia Pseudacacia mit dem unteren Teile eines gefiederten Blattes und den zugehörigen, in zwei Dornen verwandelten Nebenblättern n. g Gelenkpolster. 1⁄2 nat. Gr. Nach SCHENCK.

Fig. 198. Sproßdorn von Gleditschia triacanthos. 1⁄2 nat. Gr. Nach SCHENCK.

Oft besitzen blattlose Xerophyten angeschwollene Blätter oder Stämme: so die grünen säulenförmigen, prismatischen oder zylindrischen, keulen- oder kopfförmigen Euphorbien und Kakteen. Viele Xerophyten begnügen sich nämlich nicht damit, die Abgabe von Wasser stark einzuschränken, sondern speichern Wasser in besonderen Geweben während der Tage, wo es zur Verfügung steht, für die Zeiten der Not. Solches Wassergewebe zeichnet sich bei typischer Ausbildung durch große, chlorophyllfreie Zellen aus, die fast nur aus der riesigen Vakuole bestehen. Im Grunde genommen[S. 149] ist jede Epidermiszelle ein Wasserspeicher. Manchmal nehmen aber die Epidermiszellen ungewöhnliche Dimensionen an, so daß sie die Hauptmasse eines Blattes ausmachen, oder teilen sich auch parallel zur Oberfläche und werden zu einem ein- bis mehrschichtigen (äußeren) Wassergewebe (verschiedene Piperaceen, Begoniaceen, Ficus-Arten, Tradescantia). Sehr häufig ist aber das Wassergewebe mehr zentral gelegen (inneres Wassergewebe). Wo Wassergewebe sehr mächtig ausgebildet sind, bekommen die betreffenden Organe dadurch einen fleischig-saftigen Charakter. Daher nennt man solche Pflanzen „Sukkulenten“. Bei gewissen Umbelliferen, Cucurbitaceen, Kompositen, Asclepiadaceen, ferner Angehörigen der Gattungen Pelargonium und Oxalis der Steppen und Wüsten sind Wurzeln zu Wasserspeichern ausgebildet. Häufiger findet man Blattsukkulenten: Sedum, Sempervivum, Agave, Aloë, Mesembryanthemum; oder Stammsukkulenten: Kakteen, Euphorbia-Arten, Stapelia und andere Asclepiadaceen (Fig. 195, 199), Kleinia unter den Kompositen. Ganz besonders bezeichnend für dürre Gegenden in der neuen Welt sind die kugelförmigen oder säulenartigen Kakteen, in der alten die säulenförmigen oder kandelaberartigen Euphorbien und Asclepiadeen, die gewissen Kakteen zum Verwechseln ähnlich sehen. Die Ähnlichkeit in der Lebensweise hat hier aus ganz entfernt stehenden Pflanzen fast übereinstimmende Gestalten geschaffen (vgl. Fig. 199 a–c), eine Erscheinung, die außerordentlich häufig wiederkehrt (Konvergenz). Im Extrem nähert sich der Stamm oder das Blatt der Sukkulenten der Kugel, nimmt also bei gegebenem Volumen die kleinste Oberfläche an, wodurch die Transpiration natürlich ganz besonders stark vermindert wird: NOLL hat berechnet, daß die Verdunstung eines Kugelkaktus 600mal geringer ist als die einer gleichschweren Schlingpflanze (Aristolochia sipho). Solche und ähnliche Sukkulentenstämme sind ausgesprochene Sproßknollen, d. h. sehr geräumige Speicherorgane für Wasser.

Fig. 199. Stammsukkulenten: a Stapelia grandiflora (Asclepiadacee), b Cereus Pringlei (Cactacee), c Euphorbia erosa (Euphorbiacee). 1⁄5 nat. Gr.
c) Anpassungen an wechselfeuchte Klimate. Tropophyten[100]. In einigen dauernd feuchtwarmen Tropengegenden ist das Klima jahraus jahrein dem Pflanzenwachstume nahezu gleich günstig. Überall sonst aber, wo eine ausgesprochene Klimaperiodizität, ein regelmäßiger Wechsel zwischen einer dem Pflanzenwachstum günstigen Vegetationsperiode und einer ihm mehr oder weniger schädlichen Jahreszeit (Ruheperiode) besteht, die bald als trockne, bald als kalte Zeit (Winter) ausgebildet sein kann, entspricht diesem Wechsel eine auffallende Periodizität in den Lebensvorgängen der Pflanzen. Darauf ist es auch zurückzuführen, daß viele Gewächse solcher Klimate in mancher Hinsicht anders gebaut sind als diejenigen gleichmäßig feuchtwarmer Tropengegenden. Nur solche Formen werden ja dort gedeihen können, die in irgendeiner[S. 150] Weise den in der ungünstigen Jahreszeit drohenden Gefahren gewachsen sind. Letztere bestehen aber in allererster Linie auch da, wo ein sehr kalter Winter mit einem Sommer abwechselt, in einem Tode durch Vertrocknung während der in den Frostperioden sehr trockenen Winterszeit. Ein solcher Tod droht freilich extremen Xerophyten nicht, weil ihre Standorte auch in der günstigen Jahreszeit dauernd oder zeitweilig sehr trocken sind; sie können oft ohne weiteres die Trockenperiode überdauern. Anders steht es dagegen um die Gewächse, die in der günstigen Jahreszeit nicht an trockenen Standorten gedeihen und nicht xerophytischen Bau besitzen. Zunächst sind ihre Transpirationsorgane, die Blätter, in der Trockenzeit gefährdet. So sehen wir denn als sehr auffallende Eigentümlichkeit dieser Gewächse wechselfeuchter Klimate, daß vor oder zu Beginn der schlechten Zeit die Blätter von den Sproßachsen abgeworfen werden (laubabwerfende, sommergrüne Holzgewächse) oder sogar mit einem Teil der Sproßachsen absterben (sommergrüne Kräuter). Das genügt aber vielfach noch nicht, die Pflanze vor dem Vertrocknungstode und die Art vor dem Aussterben zu bewahren; denn auch die embryonalen Gewebe, die zu Beginn der guten Jahreszeit die verloren gegangenen Teile ersetzen müssen, würden in der Trockenzeit vertrocknen, wenn sie nicht irgendwie besonders geschützt würden.

Solche Schutzeinrichtungen, bestimmt die Pflanze über eine vegetationsfeindliche Zeit hinüber zu retten, kennzeichnen die Gewächse wechselfeuchter Klimate, sofern sie nicht ausgesprochene Xerophyten sind, so auch die meisten Kormophyten unserer Heimat. In der günstigen Jahreszeit können sie einen wirksamen Transpirationsschutz oft ganz entbehren und insofern Hygrophyten gleichen; in der ungünstigen aber sind sie den extremsten Xerophyten ähnlich. Diesem Wechsel im Aussehen verdanken die Tropophyten ihren Namen.

Entsprechend ist auch der anatomische Bau der ausdauernden Teile xerophil, der nur in der feuchten Jahreszeit vorhandenen dagegen hygrophil.

Die Gewächse wechselfeuchter Klimate können ausdauernde Holzgewächse: Bäume und Sträucher, ausdauernde Krautgewächse (Perenne) und einjährige Kräuter (Annuelle) sein. Jede dieser Gruppen hat ihre besonderen Schutzeinrichtungen gegen Vertrocknung ihrer Transpirationsflächen und ihrer embryonalen Gewebe.

1. Die Holzgewächse wechselfeuchter Klimate werfen mit Ausnahme einiger weniger immergrüner, deren Blätter Xerophytenstruktur besitzen (z. B. Koniferen, Ilex), am Ende der Vegetationsperiode das Laub ab und schließen ebenso wie die erwähnten Immergrünen im Gegensatze zu vielen, wenn auch nicht allen tropischen Formen, ihre Sproßvegetationspunkte während der Trocken- oder Winterzeit in schützende Gehäuse, in Winterknospen ein (Fig. 200).

Fig. 200. Winterknospen der Rotbuche (Fagus silvatica). kns Knospenschuppen. Nat. Gr. Nach SCHENCK.
Diese Gehäuse werden meist von fest zusammenschließenden Knospenschuppen, Niederblättern, gebildet. Manchmal werden dazu ganze Primordialblätter verwendet, die in ungegliedertem Zustande verblieben sind. Am häufigsten aber gehen die Schuppen aus dem Blattgrunde hervor, der sich entsprechend vergrößert und ausgestaltet. Das Oberblatt kommt alsdann entweder gar nicht zur Entwicklung oder sitzt in mehr oder weniger reduziertem Zustande am Scheitel der Knospenschuppe. Eine im Frühjahr austreibende Winterknospe der Roßkastanie (Aesculus hippocastanum) zeigt dies unmittelbar; denn während ihre äußeren Knospenschuppen an den Spitzen kaum etwas von einem[S. 151] Oberblatte erkennen lassen, tragen die inneren Knospenschuppen oft schon deutlich eine kleine Blattspreite. In anderen Fällen sind die Knospenschuppen ihrem Ursprunge nach Nebenblätter, gehören also auch dem Blattgrunde an (so bei der Eiche). Nicht selten ist auch das Deckblatt an dem Schutz seiner Achselknospe beteiligt, indem sein Blattgrund (oder die Basis seines Blattstieles) nach dem Blattfall am Sproß sitzen bleibt und kappenförmig die Winterknospe deckt. Bei Robinia ist dieser Blattgrund die einzige Schutzhülle der Winterknospe.

Die Knospenschuppen werden lederartig dick und hart und färben sich gewöhnlich braun. Kork- und Haarüberzüge, Harz-, Gummi- und Schleimausscheidungen sowie eingeschlossene Luftschichten machen sie zu sehr wirksamen Schutzorganen der Knospen gegen Austrocknung. Der Abscheidung von Harz usw. dienen eigenartig gestaltete Haargebilde, die Leim- und Drüsenzotten oder Kolleteren (vgl. Fig. 56). So scheiden solche auf den Deckschuppen sitzenden Drüsenzotten in Winterknospen vieler unserer Bäume, z. B. der Roßkastanie, ein Gemenge von Gummi und Harz ab, das durch Zersprengung der Kutikula frei wird und sich zwischen die Deckschuppen ergießt und sie verklebt. Wenn die Knospen im Frühjahr aufbrechen, so werden die Knospenschuppen gewöhnlich abgeworfen und bedecken alsdann den Boden. An den Jahrestrieben der Bäume sind die untersten Internodien, die zwischen den Knospenschuppen lagen, besonders kurz. Sie lassen die dicht gedrängten Schuppennarben und so die Grenzen der aufeinanderfolgenden Jahrestriebe erkennen.

2. Die perennierenden Kräuter (Stauden) wechselfeuchter Klimate opfern nicht allein die Blätter, sondern auch zum mindesten die Teile der Laubsprosse, welche höher in die Luft ragen und der Vertrocknung ausgesetzt sind, mit den daran sitzenden Knospen. Sie überwintern mit oberirdischen Knospen, die dicht über der Erde liegen, wo sie durch Schnee oder fallendes Laub gegen Vertrocknung geschützt werden, oder „ziehen ganz ein“ und überwintern mit unterirdischen Knospen (Geophyten), die in noch viel wirksamerer Weise, von feuchter Erde umgeben, vor Vertrocknung und zugleich vor dem Erfrieren bewahrt werden können.

Wo oberirdische Erneuerungsknospen vorhanden bleiben, sitzen sie entweder an oberirdischen, niederliegenden Sproßstücken (z. B. Saxifraga, Stellaria Holostea, Thymus u. a.) oder an unterirdischen Sprossen (Rhizomen), so bei unzähligen Pflanzen Mitteleuropas, z. B. den ausdauernden Rosettenpflanzen, wie Bellis, Taraxacum, Primula; den Zweijährigen oder Biennen, die mit einer Blattrosette überwintern, wie z. B. Verbascum, Digitalis und vielen anderen. Wie bei den Geophyten können auch bei solchen Stauden unterirdische Speicherorgane für organische Reservestoffe vorkommen (vgl. S. 153).

Bei den Kräutern mit unterirdischen Überwinterungsknospen, den Geophyten[105], haben die Teile, die die Knospen tragen, entsprechend ihrem Leben im Boden und ihren besonderen Aufgaben einen eigenartigen Bau. Es sind metamorphosierte Sprosse: Wurzelstöcke (Rhizome), Sproßknollen, Zwiebeln oder metamorphosierte Wurzeln (Wurzelknollen). Die im Frühjahr austreibenden unterirdischen Erneuerungsknospen brauchen organische Nahrungsstoffe, und zwar um so mehr, je länger der Weg ist, den sie bis zur Bodenoberfläche zurückzulegen haben. Diese Nahrungsstoffe werden in der vorausgehenden guten Zeit gebildet, ehe die Luftsprosse absterben. Da das Speicherungsvermögen mit dem Volumen wächst, so wird es begreiflich, daß die unterirdischen, fast nur aus Speicherparenchym bestehenden Überwinterungsorgane bei vielen solchen Gewächsen angeschwollen, dick sind. Solche Speicherorgane können Sproßachsen, Blätter oder Wurzeln sein. Sie entleeren sich bei Beginn der guten Jahreszeit ihrer Bestimmung gemäß, gehen danach, mit Ausnahme vieler Rhizome, meist zugrunde und werden oft in sehr eigenartiger Weise durch neue ersetzt. Speicherorgane von Pflanzen sind es, die wegen ihres Reichtums an ausnutzbaren organischen Reservestoffen vielen Tieren und uns Menschen als besonders wertvolle vegetabilische Nahrungsmittel dienen.

a) Die Wurzelstöcke und sehr viele Sproßknollen sind unterirdische farblose Sprosse. Jene sind verhältnismäßig dünn oder dick, mit[S. 152] langen oder kurzen Internodien (Fig. 125, 143); die Sproßknollen (z. B. die Kartoffelknollen, Fig. 201) aber sind sehr dick. Ihre Blätter (Niederblätter) sind, wie meist an den Erdsprossen, als Schuppen ausgebildet. Die Reservestoffe werden in den Sproßachsen gespeichert, weshalb diese oft angeschwollen sind. An solchen Schuppen, dem Vorhandensein regelmäßig verteilter Knospen, dem Fehlen von Wurzelhauben, endlich an ihrem inneren Bau lassen sich die Rhizome und unterirdischen Sproßknollen von Wurzeln unterscheiden. Meist sind die Rhizome, die bei manchen Pflanzen senkrecht oder schräg, bei anderen horizontal im Boden wachsen und verzweigt oder unverzweigt sind, dauernd mit Wurzeln bedeckt, während die Sproßknollen nach ihrer Bildung zunächst gewöhnlich keine Wurzeln ausbilden; doch kommen alle Übergänge zwischen Rhizomen und Sproßknollen vor.

Fig. 143 stellt den Wurzelstock von Polygonatum multiflorum dar, der auch als Beispiel eines Sympodiums (S. 111) schon angeführt wurde. Die mit c, d und e bezeichneten Stellen entsprechen den Narben der oberirdischen Triebe dreier vorausgegangener Jahre. In b ist die Basis des Stengels zu sehen, der in Blüte stand, als das Rhizom dem Boden entnommen wurde; a ist die Knospe für den nächstjährigen Trieb.

Fig. 201. Unterer Teil einer Kartoffelpflanze (Solanum tuberosum). Die mittlere dunklere Knolle ist die in die Erde gesteckte Mutterknolle, aus der sich die Pflanze entwickelt hat. 1⁄3 nat Gr. Nach der Natur mit Benutzung eines BAILLONschen Bildes. Nach SCHENCK.

Fig. 202. Zwiebel der Tulpe (Tulipa Gesneriana) im Längsschnitt. zk Achse, zs Zwiebelschuppen, v Terminalknospe, k Anlage einer jungen Zwiebel, w Wurzeln. Nat. Gr. Nach SCHENCK.

Die Knollen der Kartoffelpflanze, von Colchicum autumnale oder Crocus sativus sind Beispiele für unterirdische Sproßknollen. Die Knollen der Kartoffelpflanze (Fig. 201) oder des Helianthus tuberosus sind unterirdische Sprosse mit angeschwollenen Achsen und reduzierten Blättern. Sie entstehen in Mehrzahl aus den angeschwollenen Enden verzweigter unterirdischer Triebe, Ausläufer (Stolonen), und dienen gleichzeitig der Vermehrung der Mutterpflanze. Die an jeder Kartoffelknolle sichtbaren, regelmäßig verteilten Vertiefungen bergen Achselknospen (die Augen), die bestimmt sind, im kommenden Jahr auszutreiben. Die kleinen schuppenförmigen Blätter, in deren Achseln die Augen entstehen, sind nur an ganz jungen Knollen kenntlich. Nach Ausbildung der Knollen geht die Mutterpflanze zugrunde; die in jenen angehäuften Nahrungsstoffe dienen zum Aufbau der aus den Augen sich entwickelnden Triebe.

[S. 153]

Bei den Herbstzeitlosen (Fig. 812) entsteht die neue Knolle an der alten, und zwar aus einer Achselknospe seitlich an ihrer Basis, beim Safran (Fig. 821) aus einer Achselknospe nahe am Scheitel; daher sitzt bei den Herbstzeitlosen die jüngere Knolle seitlich neben der alten, während sie beim Safran ihr aufgesetzt erscheint.

Auch der Rettich und das Radieschen sind (unterirdische) Sproßknollen, allerdings nur aus einem Teil eines einzigen Internodiums, nämlich des hypokotylen Stengelgliedes der Keimpflanzen. An der Bildung dieser Knollen nimmt aber auch der oberste Teil der Keimwurzel teil.

Eine oberirdische Sproßknolle, die aus vielen Internodien eines Laubsprosses hervorgeht und reich an organischen Reservestoffen ist, ist z. B. der Kohlrabi.

b) Eine Zwiebel (z. B. die Küchen-, Tulpen-, Hyazinthenzwiebel) ist ein unterirdischer Sproß, dessen Achse scheibenförmig (Fig. 202 zk) abgeflacht ist und dessen fleischig angeschwollene Blätter, die Zwiebelschuppen (zs), mit organischen Reservestoffen angefüllt sind. Aus dem Vegetationspunkt der Achse entwickelt sich der oberirdische Trieb. Eine neue Zwiebel geht aus einer Knospe (k) in der Achsel einer Zwiebelschuppe hervor.

c) Andere krautige Perennen wechselfeuchter Klimate wieder (z. B. die Georginen und viele Orchideen) bilden Wurzelknollen aus (Fig. 203, 204). Sie ähneln den Stammknollen, lassen ihre Wurzelnatur aber an ihren Wurzelhauben, dem Fehlen von Blattanlagen und dem inneren Bau erkennen. Eine knollige Hauptwurzel heißt Rübe (so bei der Mohrrübe, Zuckerrübe; beides Bienne mit oberirdischen Erneuerungsknospen).

Fig. 203. Wurzelknollen der Georgine (Dahlia variabilis). Bei s die unteren Teile der abgeschnittenen Stengel. 1⁄5 nat. Gr. Nach SCHENCK.

Fig. 204. Wurzelknollen von Orchis, etwas schematisiert. t′ die alte, t″ die neue Wurzelknolle dieses Jahres. b Blütensproß. k Die Achselknospe aus dem Deck- (Nieder-)Blatt s daran, an der die neue Knolle t″ entstanden ist. r Adventivwurzeln, unverdickt. n Die Narbe an der alten Knolle zeigt die Stelle, womit die alte Knolle an ihrem Muttersproß befestigt war. 3⁄4 nat. Gr.

Eigenartig sind die Wurzelknollen der Orchideen aufgebaut: sie sind eiförmig (Fig. 204) oder handförmig gestaltet (Orchis latifolia) und entstehen stets nur aus einer Wurzel, die handförmigen durch deren Gabelung. Man findet miteinander verbunden eine ältere (t′) und eine jüngere Knolle (t″). Die ältere hat bereits einen Blütensproß (b) getragen und ist im Schrumpfen begriffen. Die jüngere ist an der Basis dieses Sprosses in der Achsel eines Niederblattes (s) an dessen Achselknospe (k) entstanden, und zwar durch Anschwellung einer sproßbürtigen Wurzel dieser Knospe. Unverzweigte dünne Wurzeln entspringen über den Knollen aus der Stengelbasis.

Viele Zwiebeln, Knollen und Rhizome haben eine spezifische Tiefenlage, die freilich je nach der Beschaffenheit des Bodens variieren kann. So[S. 154] liegen z. B. die Rhizome von Paris in 2–5 cm, die von Arum bei 6–12, von Colchicum bei 10–16, von Asparagus officinalis bei 20–40 cm Tiefe. Die Samen keimen aber auf oder dicht unter der Erde. Die Erdsprosse der jungen Pflanzen müssen also tiefer und tiefer in die Erde eindringen. Dies geschieht zum Teil durch die Zuwachsbewegung des Stammes (vgl. S. 305), zum Teil aber auch durch kontraktile Wurzeln (Zugwurzeln). Bei Lilium z. B. (Fig. 205) sind alle Wurzeln stark kontraktil. Ihre Tätigkeit ist am besten aus Fig. 205, 3 zu erkennen, wo die beiden untersten Wurzeln durch ihre Kontraktion die Zwiebel so verlagert haben, daß die höheren an ihrer Basis im Bogen gekrümmt worden sind. Hat die Zwiebel die richtige Tiefe erlangt, so wird sie durch Wurzelkontraktion jährlich nur um so viel tiefer gezogen, als sie durch Wachstum des Vegetationspunktes aufsteigt. In anderen Fällen sind nicht alle Wurzeln kontraktil (Arum), oder es sind überhaupt nur sehr wenige oder gar nur eine einzige Kontraktionswurzel ausgebildet (Crocus, Gladiolus, Oxalis elegans). Handelt es sich bei den bisher geschilderten Fällen durchweg um Seitenwurzeln, die die richtige Tiefenlage sichern, so kann z. B. bei manchen Rosettenpflanzen die Hauptwurzel durch andauernde Kontraktion während ihres sekundären Dickenwachstums dafür sorgen, daß der Vegetationspunkt jedes Jahr um so viel durch die Wurzel in die Tiefe gezogen wird, wie er durch Wachstum in die Höhe rückt, so daß die Rosette stets dem Erdboden anliegen bleibt (Gentiana lutea).

Fig. 205. 1–4 Keimung von Lilium Martagon. Verkleinert. Die horizontale Linie stellt die Erdoberfläche vor; die vertikalen Marken haben Zentimeterabstand. 1 Keimling mit Samen; 2 Keimpflanze am Ende des 2. Jahres; 3 junge Pflanze noch im Absteigen begriffen; 4 ausgewachsene Pflanze in der Normaltiefe; 5 Colchicum autumnale (etwas verkleinert); punktiert ist die ursprüngliche Lage der Knolle, ausgezeichnet die neue Lage, die durch Wurzelkontraktion herbeigeführt wurde; 6 Kontrahierte Wurzel von Lilium. Vergr. 6fach. Nach RIMBACH.
3. Die annuellen Kräuter schließlich geben für die schlechte Jahreszeit ihre Vegetationsorgane überhaupt auf: sie überdauern diese in der denkbar sichersten Weise mit ihren trockenen Samen, in denen ebenfalls Reservestoffe reichlich gespeichert sind. —

Je gleichmäßiger günstig das Klima während des ganzen Jahres für die Pflanzenwelt ist (wie in feuchten Gebieten der Tropen), um so mehr überwiegen immergrüne Holzgewächse in der Vegetation, der freilich immergrüne[S. 155] perennierende Kräuter, oft auch mit Erdsprossen, nicht völlig fehlen. Umgekehrt, je extremer die Klimaperiodizität ausgebildet ist, wie z. B. in den Steppen mit schroffer und sehr langer Trockenzeit oder in Klimaten mit harten Wintern, um so größer wird in der Vegetation der Prozentsatz an Tropophyten mit hochgradigen Schutzeinrichtungen und bei den Kräutern an Geophyten und Annuellen. Letztere treten aber in Gebieten mit sehr kurzen und kalten Vegetationsperioden, z. B. im Hochgebirge und in der Arktis, wieder stark zurück.

b) Anpassungen an den Lichtgewinn.[100].

Je üppiger sich durch die Gunst des Klimas die Vegetation entfaltet, um so riesenhaftere Pflanzenformen treten uns in ihr entgegen. In den tropischen Regenwäldern sind, wie eben schon erwähnt, neben wenigen niedrigen immergrünen Kräutern kleinere und größere immergrüne Sträucher ausgebildet, die wieder von zum Teil riesigen ebensolchen Bäumen (vgl. dazu auch S. 120) überschattet werden. Je höher die Pflanzengestalten des Waldes sind, um so mehr direktes Sonnenlicht wird von ihren Blättern aufgefangen, das kleineren Pflanzenformen verloren geht.

Die Kutikula der Blätter solcher Tropenbäume ist oft besonders glatt. Sie wirft einen Teil des Sonnenlichtes zurück, wodurch die Glanzlichter entstehen, die für das Laub der Tropen bezeichnend sind. Das ist vielleicht eine Schutzeinrichtung gegen zu starke Bestrahlung. Andere Schutzmittel gegen zu starke Bestrahlung wurden bei Besprechung der Xerophyten auf S. 145 ff. erwähnt.

Die kleinen und niedrigen Schattenpflanzen der Urwälder und auch unserer Wälder sind angepaßt, die Kohlensäure mit oft großen Blattspreiten in auffallend schwachem Lichte noch hinreichend zu assimilieren.

Im Kampfe um das Licht sind außer Bäumen und Sträuchern zwei Kormophytengruppen ganz eigenartigen Baues entstanden, die für die tropischen Regenwälder besonders bezeichnend sind, ohne bei uns ganz zu fehlen: die Kletterpflanzen (Lianen) und die Epiphyten.

1. Lianen oder Kletterpflanzen[106]. Sie vermögen ohne großen Materialaufwand, ohne säulenförmige Stämme, in kurzer Zeit ihr Laub dem Schatten, etwa des Waldes, zu entziehen und es an die Peripherie der Baumkronen oder der sonstigen Vegetationsdecke stärkerem Lichte darzubieten, indem sie mit dünnen Stengeln an fremden Sprossen, Baumstämmen und Ästen emporklettern. Die tauartigen Stämme der Lianen sind es, die den Urwald der Tropen in ein vielerorts undurchdringliches Dickicht verwandeln.